Categories

Roadside pollinators at MEEC

On March 5, 2022, Mia and Alex presented the Pollinators on Roadsides project at the Midwest Ecology and Evolution Conference (MEEC). They focused on the bee abundance results since the specimens had not been fully identified to species yet.

Team Echinacea at TPE

On 18 February 2022, Amy, Jared, Mia, and Alex presented at the online Prairie Enthusiasts (TPE) conference. Posters were available online during the conference (February 15-19, 2022), and conference attendees could ask questions via the chat on the 18th. Check out the posters below!

2021 Update: Pollinators on roadsides

Tallgrass prairie once covered vast expanses of western Minnesota, but it has been almost entirely converted to agriculture, and only fragmented patches remain, often along roadsides. Insecticide use has also dramatically increased since the early 2000s, especially the use of neonicotinoids. In addition, pollinator populations are declining worldwide, likely due to this loss in habitat quantity and quality. In our study area, student Ben Lee found that pollinator habitat decreased by 6.8 km2 from 2006 to 2014.

More research is needed to understand how pollinator communities are changing in the fragmented prairies of western Minnesota. Native bees are critical for pollinating both native plants and commercial crops, and many plants depend on specialized pollinators, and so the decline of these pollinators may threaten the long-term survival of native plant populations as well as human food systems.

Therefore, the Pollinators on Roadsides study, also known as the Yellow Pan Trap project (YPT), is measuring changes in native bee diversity and abundance from 2004-2019 and investigating how the amount of agricultural land and grassland corresponds to the nearby bee community. One hypothesis is that all bee species are declining in abundance equally. Alternatively, some bee populations may be shrinking while others take advantage of the decreased competition and become more prevalent, which would change the community composition. We hope to find out!

This study is based on the original 2004 experiment by Wagenius and Lyon, who studied the relationship between characteristics of land and the abundance and diversity of pollinators. In 2004, 2017, 2018, and 2019, Team Echinacea set out yellow pan traps at 20-40 locations along roadsides in Solem Township which were surrounded by varying amounts of agricultural land. We collected the bees that fell into the traps and stored them at the Chicago Botanic Garden where patient volunteers pinned all the specimens. Many thanks to all the people who have contributed to this project over the past 18 years!

After a hiatus due to COVID-19, the Yellow Pan Trap project (YPT) is finally back on the road! In December 2021, we completed an inventory of all 1,988 YPT bees and delivered them in 8 cases to Zach Portman at the University of Minnesota. Volunteers Mike Humphrey and Anna Stehlik previously grouped the specimens by genus, and Zach will now identify the bees to species. Mia Stevens is working on a preliminary community analysis, and Alex Carroll is tackling the GIS landscape analysis.

Working with data that has been compiled by many different people over numerous years has been both exciting and challenging. Many thanks to intern Erin Eichenberger for leaving clear documentation from 2020. There are still a few problems that need to be resolved. During inventory, we discovered 9 pairs of duplicate specimen id numbers (SPIDs) from 2017, and the specimen labels will need to be changed. In addition, some of the date and trap numbers on the specimen labels were edited in pencil, and these should be cross-checked with the existing dataset.

  • Start year: 2004, rebooted in 2017
  • Location: Roadsides and ditches around Solem Township, Minnesota. GPS coordinates for each trap are in a Google Map which Stuart Wagenius can share as needed.
  • Overlaps with: Ground nesting bees
  • Data collected: All YPT data can be found in Dropbox/ypt2004in2017.
    • The most up-to-date files are in this folder: Dropbox\ypt2004in2017\yptDataAnalysis2022
    • The inventory list can be found here: Dropbox\ypt2004in2017\yptDataAnalysis2022\masterYptChecklist2021Verified.csv
  • Specimens collected: Eight cases containing 1,988 specimens were delivered to Zach Portman at the University of Minnesota for further identification.
  • Team members involved with this project: Mia Stevens (2020-2022), Alex Carroll (2021-2022), Erin Eichenberger (2019-2020), Anna Stehlik (2020), Shea Issendorf (2019), Mike Humphrey (2018-2021), John Van Kampen (2018-2019), Kristen Manion (2017-2018), Evan Jackson (2018), Alex Hajek (2017), and Steph Pimm Lyon (2004)
  • Products: Stay tuned!

You can read more information about the pollinators on roadsides project here.

Winter Internship Week 1: Native Bee Collection and Research Procedures

During my first week, I have learned how to perform many of the tasks involved in processing specimens and collecting data. I have particularly enjoyed working with the native bee collection. I have assigned SPID numbers and have organized some of the specimens by grouping them together based on size and other qualities such as color and marking patterns. I am beginning to develop an eye for identifying differences between bees and am becoming more familiar with the characteristics of the various genera we are classifying them into. Examining the bees under the microscope has been especially interesting. I have been interested in bees for quite a while but have never had the opportunity to see them in such detail before. The information I already knew about bee morphology became more tangible when I could see the features so closely.

Besides working with the bee collection, I have made progress on rechecking and labeling Echinacea heads. We seemed to be behind on this task, but I have been working through many heads, getting them ready to be scanned so that we can keep them moving through the data processing steps. I plan to continue working on rechecking and labeling this week, as well as randomizing. I also hope to learn several new lab skills and continue to grow my understanding of the research process.

2019 Update: Pollinators on Roadsides

The diversity and abundance of bees native to the tallgrass prairies of Minnesota are declining; one potential reason is changes in how land is used and managed. Native bees provide vital pollination services to our native prairie plants as well as agricultural crops. It is important to understand the factors involved in the decline of pollinators so they can be combatted and our plants be protected. In summer 2019, the focus of the Pollinators on Roadsides project was to collect bees using yellow pan traps and to take into account the burn history of the collection sites. We investigated the burn history of the collection sites to compare the bee collections from the last three years and determine if there is a relationship between burning and pollinator community composition. Thanks to local government records, inquiry with private land owners, and observation of recent burn evidence we discovered which of the 38 sites had a history of prescribed burning.

In summer 2019 Shea Issendorf and John Van Kampen collected a total of 422 bees from 38 yellow pan traps placed six times throughout the field season (June 28, July 11, July 18, July 31, August 8 and August 19). Trap locations include different land types such as agriculture, restored prairie and developed land. We determined the burn history of the trap locations in the last three years (2019, 2018 and 2017,) and whether the burns occurred in the spring, fall or both. We stored the bees in in vials of ethanol in freezers until they were pinned by Shea Issendorf and Mike Humphrey. We found that a lunchbox with ice packs could comfortably hold all the vials from a collection date for transportation from the field to the CBG.

The design and goal of this experiment is based on the original 2004 experiment by Wagenius and Lyon. They studied the relationship between characteristics of land and the abundance and diversity of pollinators. Using the data that came out of 2004, the reboot in 2017, and the continuation throughout 2018 and 2019, we observe how pollinator abundance and diversity has changed. With this valuable evidence of declining native pollinator communities, there is opportunity to change the way in which natural lands are used and how surrounding lands are treated (such as through burning, herbicide application and fragmentation).

Yellow pan traps resemble the yellow flowers of the Asteraceae family that native bees are attracted to.

 Start Year: 2004, rebooted 2017

Location: Roadsides/ditches around Solem Township. GPS coordinates for each trap are in a Google Map which Stuart Wagenius can share as needed.

Overlaps With: Ground nesting bees

Data/Materials Collected: 386 bee specimens collected; currently dried, pinned and stored at the Chicago Botanic Garden.  Specimens will be classified by Mike Humphrey before being sent to the University of Minnesota for further identification

Pinning records:

~Dropbox\teamEchinacea2019\sheaIssendorf\YPT 2019 Si\Si_YPTdatasheets2019.xlsx

 Land uses/7 traps that have burn history within last 3 years:

~Dropbox\teamEchinacea2019\sheaIssendorf\YPT 2019 Si\YPT trap land uses 1.xlsx

Other files associated with the project can be found in the folder

~Dropbox\ypt2004in2017\YPT2019

Team Members involved with this project: Shea Issendorf (2019), Mike Humphrey (2018-2019), John Van Kampen (2018-2019), Kristen Manion (2017-2018), Evan Jackson (2018), Alex Hajek (2017), and Steph Pimm Lyon (2004)

You can read more about pollinators on roadsides, as well as links to prior flog entries mentioning the experiment, on the background page for this experiment.

Final Flog – Eli Arbogast

Three weeks have gone by fast! It’s pretty incredible how much we were able to fit into such a short time span. 

Our first week was spent getting introduced to the center and the work happening here. We met lots of people as well as lots of lab equipment! We learned how data collection happens for the study of Echinacea, by completing a large set of Echinacea achene counting using new study protocols. This study will hopefully yield interesting insights into how Echinacea plants develop and utilize resources. We also learned how XRays are used and processed (RIP to the XRay machine, gone but not forgot), and spent some time helping organize Echiachea heads for later use. 

Our second week, we continued the organization and processing of Echinacea data but also began to develop our own research inquires, based on our own personal interests and the data we had to work with. We all chose very different focuses, mine being a focus on long-term analysis of pollinator diversity and abundance measures, or “How are bee populations changing over time in the Echinacea fields?”

Bee samples that provided me with data for my work

Our third week, we focused in on our projects. Locating and processing my pollinator data took a good deal of time, so I spent a good chunk of the week processing this data as well as learning R, a widely applicable skill for someone interested in science. While I still have a lot of questions and things I’d like to explore further, I am very happy with what I was able to accomplish given the time constraints. Please see my attached presentation below for more detail and major takeaways! 

I would like to give a huge thank you to Stuart, Erin, and Riley, who made this entire experience possible. They helped us pretty much every step of the way, whether it was practicing our ‘ABTs’s, scanning seeds, or learning R from the ground up. I am very happy to have had such a productive and fulfilling winter break and look forward to more breaks, and more work like it. 

I have very much enjoyed my time here, and after 3 weeks of work am looking forward to the holidays with family, and sleeping in past 6am! 

Til next time Flog, 

Eli  

Busy as a bee

This summer Shea and John continued our yellow pan trap project to sample the pollinator community found along roads in our study area in Minnesota. Today volunteer Mike Humphrey pinned the last bee from this summer’s collection!

Mike with the collection; next he’ll be consolidating these with Shea’s pinning from this summer to be sent off for ID at the University of Minnesota!

Mike received a surprise on his last day of the year; volunteer Char found a desiccated bee in one of the Echinacea heads she was cleaning! Mike reports it’s different from anything else we have in the collection this year, so a seriously cool find.

A majority of the bees in our 2019 collection are unremarkable Lasioglossums that we call “small black bees,” but we also get remarkably shiny blue and green bees in our traps!

Thanks for all your hard work Mike, and we’ll see you next year!

2018 Update: Pollinators on Roadsides

A bumblebee on a yellow flower. We use yellow pan traps to mimic these Asteraceae

Pollinator diversity and abundance are declining due in part to land use change such as habitat destruction and fragmentation, pesticide contamination, among other numerous anthropogenic disturbances. The extent to which pollinator and native bee diversity and abundance is changing is not well understood, especially within tallgrass prairie ecosystems. Pollinators are important in the prairie and they provide valuable ecosystem services to native plants and to economically important plants used in agriculture.

In summer 2018, we collected bee specimens from 37 roadside sites using yellow pan traps. These sites are located within a gradient of various surrounding landscapes, some surrounded by natural areas, semi-natural areas, agricultural fields, development, or a mixture of the above. IN summer ’17 we sampled over 600+ bee specimens across 8 sampling weeks. IN summer ’18, we captured similar abundances of bees (~450 specimens) collected across 6 weeks. Once specimens are collected, they are stored in ethanol until we are able to pin them. Once specimens are processed, we catalog specimens and keep a record for later specimen identification. Identifying specimens to species requires specific, expert knowledge of the families and genera of native bees and pollinators in this ecosystem.

The goal of this experiment was to repeat a similar study done in 2004 by Wagenius and Lyon, in which they collected information on pollinator abundance and diversity. The aim of the project was to understand how landscape characteristics may influence bee community composition. The information from this project allows us to make comparisons between the pollinator communities collected in 2017, and a similar project from 2004. This information can inform diversity and abundance changes across the 13-14 years and provide valuable insight into native bee declines in this system.

Year started: 2004, rebooted in 2017

Location: Roadsides in and around Solem Township, Minnesota.

Overlaps with: Ground nesting bees (link to come)

Samples collected: Over 450 bee specimens, currently being pinned at CBG

GPS points shot: Locations for each of the pan trap sites

Team Members who have worked on this project include:  Steph Pimm Lyon (2004), Alex Hajek (2017), Kristen Manion (2017 & 2018), and John VanKempen (2018). Also, a big thank you to Mike Humphrey who has worked in the lab pinning, processing, and cataloging native bee specimens from the 2017 and 2018 field seasons.

You can find out more about the pollinators on roadsides project and links to previous posts regarding it on the background page for this experiment.

2017 Update: Pollinators on roadsides

This summer we collected samples of pollinators from 39 roadside sites using yellow pan traps. We captured over 400 insects across 8 weeks. The specimens are stored frozen until pinning and identification. We will use this information to make comparisons between the pollinator communities collected in 2004. This information could inform potential diversity and abundance changes across the 13 years, and provide valuable insight into potential pollinator decline in this system.

Pollinator diversity and abundance are declining due in part to land use changes such as habitat destruction & fragmentation, pesticide contamination, and numerous other anthropogenic disturbances. The extent to which pollinator diversity and abundance is changing is not well understood, especially within tallgrass prairie ecosystems. Pollinators are important in the prairie: they provide valuable ecosystem services to native plants and to important plants used in agriculture.

The goal of this experiment was to repeat a similar study done in 2004 by Wagenius and Lyon, in which they collected information on pollinator abundance and diversity with the aim of relating landscape characteristics to bee community composition.

Augochlorella sp. foraging for pollen. Our yellow pan traps are similar in color.

GIS analysis of pollinator habitat

Read Ben’s Lee’s report and look at his map about pollinator habitat in Echinacea land.