Since 1996, members of Team Echinacea have walked, crawled, and ~sometimes~ run next to rows of Echinacea angustifolia planted in common garden experiments. Although protocol varies depending on the experimental plot, every year team members record flowering phenology data, measuring data, and harvest the heads of the thousands of plants we have in common garden experiments.
Note that these experiments are not really gardens. “Common garden” refers to the experimental design. Most of our experimental plots are prairie restorations, a few are abandoned ag fields that are manged as grassland habitat. Some plots have multiple experiments within. The Echinacea Project currently has 10 established experimental plots:
exPts01-10. To avoid repetitiveness of reports on yearly phenology, measuring, and harvesting, this project status report will include updates on all experimental plots 1, 2, 4, 5, and 8. Reports for the others will be elsewhere: Amy Dykstra’s plot (exPt03), the hybrid plots (exPt06, exPt07, exPt09), and the West Central Area common garden (exPt10).
exPt01: Experimental plot 1 was first planted in 1996 (cleverly termed the 1996 cohort), and has been planted with nine other experiments in subsequent years, with the most recent planting being Amy Waananen’s inter-remnant crosses. It is the largest of the experimental plots, with over 10,000 planted positions; experiments in the plot include testing fitness differences between remnants (1996, 1997, 1999), quantifying effects of inbreeding (inb1, inb2), and assessing quantitative genetic variation (qgen1). There are also a number of smaller experiments in it, including fitness of Hesperostipa spartea, aphid addition and exclusion, and pollen addition and exclusion. In 2020, we visited 4,340 of the original 10,622 planted and found 3,258 alive. Only 484 plants were classified as “flowering” in exPt01 this year. This is a drastic increase from the nearly 70 plants that flowered in summer 2019 – perhaps it is a testament to the benefits of controlled burning (we burned in spring 2020 but not in 2019). In summer 2020, we harvested ~815 total Echinacea heads in exPt01 (I have not finished the reconciliation process). In the fall, we added 484 staples to positions where plants were gone for three straight years, however, we ran out of staples, so 130 of these positions have “flaples” which are bent pin flags.
exPt02: Heritability of flowering time is the name of the game in exPt02. Planted in 2006, exPt02 was planted to assess heritability of flowering start date and duration in Echinacea. In summer 2020, we visited 2,010 positions of the 3,961 positions originally planted. We measured 1,638 living plants, of which 444 were flowering. In the fall, we harvested ~626 heads from exPt02. We do not have an exact number of heads harvested from exPt02 yet, as we have not had time to complete head reconciliation. Location: Hegg Lake WMA
exPt04: Experimental plot 4 was planted to gauge whether Echinacea from small remnant populations could be genetically rescued via an outcross to larger, more genetically diverse populations. Caroline Ridley and other members planted this plot in 2008. We did not measure exPt04 this year. Location: Hegg Lake WMA
exPt05: The only experimental plot planted at Staffanson Prairie Preserve (SPP), exPt05, was planted to compare progeny of maternal plants from burned and unburned sections of SPP. There were 2800 plants planted originally, but high mortality made it impractical to visit the plot row-by-row. Now, we and treat the plot like demography. We use our survey-grade GPS to find plants in exPt05 that have previously flowered and add more plants to the stake file if new plants in the plot flower. In 2020 we found 11 living plants, two of which were flowering! There was only one head to collect, since one of the flowering plants exhibited only vertical development (no head). Location: Staffanson Prairie Preserve
exPt08: Team Echinacea established quantitative genetics experiments to quantify additive genetic variance of fitness in Echinacea, with the idea that we can estimate evolutionary potential of study populations. The maternal parents of qGen2 and qGen3 are plants in the 1996, 1997, and 1999 cohorts. These plants were crossed with pollen from plants in remnants to produce seed for qGen2 and qGen3, which now inhabit exPt08. Originally, 12,813 seeds were sown in the common garden. Seeds from the same cross (shared maternal and paternal plants) were sown in meter-long segments between nails. A total of 3,253 seedlings were originally found, but only 562 plants were found alive in 2020. There were 5 flowering plants in 2020, and 5 heads. Note that there were an additional 2 heads collected from transplant plot.
Plot management: To ensure that the common garden environment is as similar as possible to the prairie environment we must actively manage it. This management includes removing foreign species and supplementing with natives. One of our main management methods is through fire. We were unable to burn plots this fall however we hope to burn p8 and p1 this spring. We also collected seed to spread after burns including Schizachyrium scoparium, Bouteloua curtipendula, along with multiple species of Solidago and quite a few Asters.
Asclepias viridiflora in p1: In 2019, plugs of an uncommon prairie milkweed, Asclepias viridiflora, were planted in Experimental plot 1. The purpose of this experiment is to assess the survival and fitness of A. viridiflora. Assessing vitality will also provide a frame of reference for species conservation across modern prairies. In 2020 a protocol was developed to identify and measure A. viridiflora. These data are waiting to be entered and analyzed.
Hesperostipa demography: In 2009 and 2010, porcupine grass (Hesperostipa spartea, a.k.a. “stipa”) was planted in experimental plot 1. In total, 4417 seeds were planted, 1 m apart from each other and all 10 cm north of Echinacea plants. Between 2010 and 2013, each position was checked, and the plant status recorded. Since 2014, we have searched for flowering plants. The data from this summer can be found here cgdata/summer2020/stipaSearch, these data have not been processed yet.
Inb1: The INB1 experiment investigates the relationship between inbreeding level and fitness in Echinacea angustifolia. Each plant in experiment INB1 originates from one of three cross types, depending on the relatedness of the parents: between maternal half siblings; between plants from the same remnant, but not sharing a maternal or paternal parent; and between individuals from different remnants. We continued to measure fitness and flowering phenology in these plants. In 2020, of the original 557 plants in INB1, 111 were still alive. Of the plants that were alive this year, 30 (27%) were flowering. This is up from the 4% that were flowering last year. All individuals were planted in 2001.
qgen: The qGen1 (quantitative genetics) experiment in p1 was designed to quantify the heritability of traits in Echinacea angustifolia. We are especially interested in Darwinian fitness. Could fitness be heritable? During the summer of 2002 we crossed plants from the 1996 & 1997 cohorts of exPt01. We harvested heads, dissected achenes, and germinated seeds over the winter. In the Spring of 2003 we planted the resulting 4468 seedlings (this great number gave rise to this experiment’s nickname “big batch”). In 2020 we assessed survival and fitness measures of the qGen1 plants. 1,642 plants in qGen1 were alive in 2020. Of those, 17% flowered in 2020. All were planted in 2003.
Stuart and John measure Echinacea plants in exPt02 under a gloomy sky
For more information on survival in common garden experiments, see this flog post about survival in common gardens.
Start year: Various, see individual listings above. First ever planting was 1996.
Location: Various, see above
Overlaps with: Pretty much everything we do.
Data/ materials collected: Measure data for all plots. All raw measure data available in cgData repository. Processed data should eventually be available in SQL database; ask GK for status of SQL database. GPS points were shot for the exPt09 flowering plant. Find the GPS jobs containing the exPt09 corners here: Dropbox/geospatialDataBackup2020/convertedASVandCSV2020/EXPT9_20200917_DARW.asv The stake file to find exPt5 plants is here: Dropbox/geospatialDataBackup2020/stakeFiles2020/exPt05stakeFile.csv Products: Many publications and independent projects.
This summer Jay Fordham conducted an experiment in
experimental plot 8 to determine an effective method for eradicating Fraxinus pennsylvanica, or green ash.
Team Echinacea is concerned with the spread of green ash in our experimental
plots because it crowds out native herbs. The Echinacea in exPt8 may be at
particular risk due to their young age relative to individuals in other plots.
A prior attempt to manage ash in exPt8 with triclopyr (brand name Garlon)
largely failed, resulting in only 3% mortality.
Jay devised three treatments of triclopyr application to green ash. The three treatments were 1) A foliar application where he painted all leaves with triclopyr; 2) A bark application where he cut each ash 10cm from the base and applied triclopyr to the remaining above-ground stem; and 3) A cambium application where he cut each ash 10cm from the base, scraped off the exterior bark with a knife, and applied triclopyr to the remaining above-ground stem. He divided exPt8 into 35 treatment sections and randomly assigned a treatment to each section. He then randomized the treatment application order and, with the help of the team, treated 438 green ash trees from July 22nd to August 8th. Jay then assessed ash mortality on August 27th and 28th and found the cambium application to be most effective. Jay presented his findings at the 2019 Midstates Undergraduate Research Symposium in St. Louis on November 1-2. His presentation is available to view and download here.
Triclopyr treatment
Mean Proportion Dead Stems
Foliar application
0.005
Cutting and bark application
0.333
Cutting and cambium application
0.498
In addition to the green ash management experiment in exPt8,
the team removed Bird’s-foot trefoil from exPt1 and along the bordering road.
The team also removed sweet clover from within and around exPt1, exPt2 and
exPt3. The team cut back sumac from the easternmost rows of exPt1.
Jay brandishing sweet clover plants that the team pulled in exPt1
In June the team planted Asclepias
viridiflora in exPt1 at regular intervals. Stuart initially assessed
approximately 124 surviving plugs prior to planting. Erin and Riley, while
pulling flags marking the planting locations in September, did not observe any
surviving milkweed plants. The team also planted Carex gravida and Carex
brevior in the path around exPt1. The team planted three of the same carex
species at each location in a triangular configuration. Erin shot the planting
positions with the GPS pole in the center of the three plants, or between two
where two survived, or north of a single plant where one survived. In October
she observed that approximately 2/3rds of the carex plantings were present.
Location: exPts 1, 2 and 8
Data/materials collected: Weeds were discarded outside the plot as they were removed.
Find information about Jay’s experiment at
~Dropbox\teamEchinacea2019\jayFordham
Find information about the planting locations of the
Asclepias viridiflora at ~Dropbox\CGData\Asclepias\plantPlugs2019.csv
Find the two GPS jobs containing the carex locations in
~Dropbox\geospatialDataBackup2019, saved in three formats in
temporaryDarwBackups2019, convertedXML2019 and convertedASVandCSV2019. The job
names are CAREX_P1_20190801_DARW and CAREX_P1_20191003_DARW.
Throughout the summer, I designed and collected
materials to establish an experiment in experimental plot 1 to study parasites
and their impact on the community of host plants they live in. Parasitic plants
are plants which absorb nutrients from neighboring plants. Parasitism is an important
part of nutrient cycling in many ecosystems and parasite scientists hypothesize
it to be an important part of prairie ecosystem maintenance.
This summer I collected seeds from five parasitic
plant species which are native to the prairie. I also collected the seeds of
over 100 species that can be commonly found in Douglas County, Minnesota and I
have begun experimental germination of them and will continue to do so in the
future. I developed a plan to plant Comandra and Pedicularis throughout exPt 1
and establish communities of 40 host species around them to address questions
about the impact native parasitic plants have on plant community members. In
late October I harvested biomass from the proposed parasite planting locations
to understand the species diversity and abundance present before planting.
Start year: 2019
Location: Douglas County, Minnesota; exPt 1
Overlaps with: Experimental plot management, Hesperostipa common garden
experiment
Materials collected: Parasitic plant seeds (Cuscuta
glomerata:18,000 across 6 individuals in 4 locations; Agalinis aspera: ~8,000
across 81 individuals in 3 locations; Agalinis tenuifolia: ~4,500 across
41 individuals in 1 location; Pedicularis canadensis: ~14,000 from 1
location; and Comandra umbellata: ~1,800 from 3 locations) and host
plant seeds (500+ seeds per host species, numbering approximately 100 species).
Seeds are stored at the Chicago Botanic Garden.
Additionally, 216 .1 x 1m strips of dried biomass are
stored at the Chicago Botanic Garden.
Data collected: Find data related to this project
including the proposed planting scheme in the cgdata repository in
~cgdata\summer2019\Hemiparasites
Last Friday, I was dispatched by Stuart to find the number of plants/ achenes planted in each experimental plot, along with the number alive as of a recent year (2017-2019, based on the plot). Although records of some plots were a bit harder to come across that others, I was able to compile data from each plot (besides p10 – planted 2019 – data coming soon). This would not have been possible without the help of Gretel, so thanks GK! I have attached a small datasheet with the survival data.
In the history of the Echinacea Project, the team has sown 31,888 Echinacea viable achenes in experimental plots. There were many more sown that likely did not have a seed. Team members found 3634 seedlings from these seeds, not including Amy D’s experimental plot 3 and remnant seedling refinds. The team has planted 18,869 Echinacea seedlings in experimental plots, not including p10 – planted at West Central Area HS in 2019. Finally, 7090 Echinacea are currently alive in the experimental plots!
It’s raining. We searched for sweet clover south of p1 (experimental plot 1) and pulled about 70 stems. We started walking through p1 and encountered three clumps of bird’s-foot trefoil in rows 31 & 32 near position 878. As we were extracting the three bad plants with garden knives, the skies unleashed a downpour. We hastily gathered the leguminous carnage and headed back to the Hjelm house.
In 2014, members of Team Echinacea did an experiment to test methods of removing Hawkweed. Last year Ali assessed the results of the different methods that they used: cutting the head and painting the stem with herbicide, painting the leaves with herbicide, hand pulling with and without tools, and a control treatment. You can read her post describing the experiment and with the results from 2015 update here and the original post with methods here.
I went back to the treatment plots this morning and assessed Hawkweed percent cover two years after the treatment. The plots with the lowest percent cover this year were those where they removed hawkweed by hand, with tools. These plots also had the smallest percent change from 2015 to 2016, indicating lasting effects of removal. This was in contrast to those that had been treated by painting leaves with herbicide, where plots had an average of 4x increase in Hawkweed. From now on, we’ll use this method to remove Hawkweed in P1. We’ll assess percent cover in the treatment plots and the status of other Hawkweed plants in p1 to keep track of our progress at eradicating Hawkweed from the common garden.
The gang had a busy day today, almost all of it in the warm June sun. Alyson continued setting up her experimental plots in the Staffanson bog, and spent the afternoon measuring canopy cover and soil pH for her IS project. Meanwhile, the rest of the team (minus Gretel, who was setting up work for q2 juvenile counts) picked up our fleg begs and counted Hesperostipa spartea and weeded in p1. Amy and James found one H. spartea specimen with 137 seeds! We are now up to 17 out of 59 rows surveyed. Meanwhile, Will, Alex and Per led the crew in weeding out the non-native yellow sweet clover (Melilotus) from the periphery of the plot area. Hopefully we eliminated a lot of potential seeds form the seed bank, meaning that in future years the rows will be devoid of this weedy legume and the study Echinacea will have less competition. Stuart also showed me what poison ivy looks like for the third time, and I still don’t think I could pick it out of a lineup.
Per with a bundle of sweet clover picked from around p1. This is probably less than 10% of what was removed today.
After some brief (or for Alex, who was cleaning the bathroom, not so brief) chores at the Hjelm House, the team returned to exPt8 (experimental plot 8) to search for juvenile Echinacea crossesplanted in 2013. This meant more time bent over, although now instead of looking for seedlings we were looking for melted bits of toothpick (which were placed to mark seedlings). Some seedlings were in great shape — Alex and I found a couple with basal leaves over 10 cm tall. Others were not in great shape, either dead or missing like Jimmy Hoffa. We got about a third of the work for qGen2 this afternoon. It may rain tomorrow, so we’re bracing for indoors-work and hiding our bicycles inside.
Using a pink sword to claim the new seedling (left) for Team Echinacea. We used cocktail swords to denote seedlings germinating this year from achenes sown in 2013.
Today we started in P8 by pulling some sweet clover. It was not a task to be taken lightly, only the heartiest could master the “full pull.” It was really in the ground and being held tight by Brome grass. We did manage to pull on and get a lot pulled out and removed. Hopefully there will be a lot less in the plot from now on. Below is a picture of our bundles. We figured they were at least as big or bigger than Gina! We broke for lunch and then started flagging in P1 and at Hegg lake. We were all getting quite good at finding plants and/or staples and almost had all the 5 meter flagging done when a sudden, unexpected rain shower left us running for cover!
Dwight and Stuart broadcast native prairie seed in experimental plots p1 & p8 on Friday. At 34 °F (1°C) it was the warmest day in a month. It was also very windy –great for spreading seed! We broadcast Bouteloua curtipedula, Schizachyrium scoparium, Galium boreale, and Phlox pilosa directly on the snow. There wasn’t much snow and it was melting. We broadcast Lathyrus venosus in p1. We stored about half of each species, except L. venosus, in the Hjelm house to broadcast in the spring. (Hedging our bets.)