
R crash course

Laurent Gautier

December 2003

1 Introduction

This document has no pretention of being comprehensive. The aim is just to
help you to start with R. You will learn more during the other courses, by
using the embedded help system and by reading the documents presented in the
section 8. The section 9 will explain some of the terms used. You will find those
terms in bold throughout this document. For the sake of clarity some aspects
are probably exaggerately simplified. It is hoped this causes no harm.

1.1 History and availability

S was developped at Bell laboratories in 70s. It became soon S-plus. R was
started as a free implementation of the S/S-plus language. The two languages
remain mainly identical.

The source code for R is freely available can be compiled for a very wide
range of platforms. Executable binaries are also available for platforms like
Windows (98, 2000, XP, NT), MacOS (version IX and X), and several linux
distributions. I have a computer at home, you should be able to run R easily.

1.2 Why should we use R ?

Software based on spreadsheets (Microsoft’s Excel is a popular one) are not the
only way handle data. The R software will let you do all what you were doing,
but will also let you go (far) beyond. A large number of packages written
by renowned statisticians are available, and you will be able to write your own
code.

1.3 Starting (and exiting) R

The installation procedure will not be detailed1.
With Unix/Linux, just write R. Your terminal is now a R console.

With Windows, double-click on the R icon. An R process is started. A R console
window is opened. The console shows a > waiting for your input.

R has a powerfull system to query help. By entering help.start() a browser
will be started. You can navigate with the mouse through the help. Once this
has been done, the results of help calls will be returned to the browser. The
command help queries help. (help() is equivalent to help(help)).

1under windows all you need to do is to double-click on the executable you downloaded.

The install program will guide you through

1

To exit, write q(). You are prompted to known if you want to save your
working session. Answering y or n will lead you out.

1.4 Interactive browsing of examples

This document can be used interactively within R. To do so, you will need:

1. the packages DynDoc and tkWidgets installed

2. the files .Rnw and .pdf for this document (available at
http://www.cbs.dtu.dk/staff/laurent/teaching/crashR.Rnw and
http://www.cbs.dtu.dk/staff/laurent/teaching/crashR.pdf).

3. to enter the R code at
http://www.cbs.dtu.dk/staff/laurent/teaching/crashR_start.R or
enter blindly the following command in R

source(url("http://www.cbs.dtu.dk/laurent/teaching/crashR_start.R"))

2 Basics about the language

2.1 Like a pocket calculator (just bigger)

R is designed to do statistics, hence to handle numbers. You can enter the
following line:

> 1 + 2

[1] 3

The results is 3, as one might have expected.
"+" is called an arithmetic binary operator. It is arithmetic because it does

some maths. It is binary because it takes two arguments (1 and 2). It is an
operator because it does something.

+ addition
- substraction
* multiply (product)
/ division. Divide the first argument by the second

argument
^ power. Multiply the first argument the number of

times given in the second argument. xy writes x ^ y

in R.
%% modulo (remainder of the integer division). Exam-

ple: 10 \%\% 3 returns 1.
%\% integer division. Example: 10 %\% 3 returns 3.

Operators have a precedence (i.e. a relative priority). The parenthesis can
be used to indicate in which order the computation should be performed.

> 2 + 3 * 4

[1] 14

> 2 + (3 * 4)

2

http://www.cbs.dtu.dk/staff/laurent/teaching/crashR.Rnw
http://www.cbs.dtu.dk/staff/laurent/teaching/crashR.pdf
http://www.cbs.dtu.dk/staff/laurent/teaching/crashR_start.R

[1] 14

> (2 + 3) * 4

[1] 20

Many mathematical functions are also available. Example:
To name few of them:

• Trigonometric functions

cos, acos cosinus, arc-cosine

sin, asin sinus, arc-sine

tan, atan tangent, arc-tangent

• Logarithm and exponentials

log logarithm.

log2 base-2 logarithm (log2 x is done in R: log2(x)).

exp exponential (expx is done in R: exp(x)).

• miscellaneous

sqrt square-root (
√

x is done in R: sqrt(x)).

> cos(pi/3)

[1] 0.5

2.2 variables (objects)

An R environment can be thought of as a working space. Naturally you can
store things (eventually to re-use them later) in it. The things or objects you
store are like boxes in a storage room. To find something, or actually to ask R
to give you something, it is convenient to have a name for it. The "<-" operator
performs what is called assignment. The first argument is a name for the
object given in the second argument. If one does

> x <- 1

the numerical value 1 is stored under the name x. To query this object, just call
it by its name:

> x

[1] 1

In R, a copy of the object is made during an assignment:

> print(x)

[1] 1

> y <- x

> print(x)

3

[1] 1

> print(y)

[1] 1

> x <- 2

> print(x)

[1] 2

> print(y)

[1] 1

Variables are very convenient to store intermediate results. Example:

> alpha <- 0.34

> a <- cos(alpha)

> b <- sin(alpha)

> (a^2) + (b^2)

[1] 1

The example above probably reminded you of something:

∀α, cos2 α + sin2 α = 1

The function objects returns the names of the objects in an environment
(or working space).

> objects()

[1] "a" "alpha" "b" "x" "y"

The function rm(object) removes the object (i.e. deteles it).

> foo <- 33

> objects()

[1] "a" "alpha" "b" "foo" "x" "y"

> rm(foo)

> objects()

[1] "a" "alpha" "b" "x" "y"

2.3 mode (or type)

The objects we have seems were all numbers, but we can manipulate more than
numbers.

> name <- "George"

> age <- 43

> sex <- factor("MALE", levels = c("MALE", "FEMALE"))

> married <- TRUE

4

The type of the object is also called the mode in R. Knowing what an object
is important for the system to know how to handle it. Example:

name + age

returns:

Error in name + age : non-numeric argument to binary operator

R did not know how to perform "+" using a character and a numeric.
The different modes are:

• The mode character is for strings.

• The mode numeric deals with real numbers.

• The mode integer concerns integers.

• The mode logical would be called boolean in other languages. It is linked
to something called boolean logic. Boolean operators are:
x && y x AND y
x || y x OR y
! x NOT x
xor(x, y) x XOR y

They can be combined to verify

> has.plane.ticket <- TRUE

> has.VISA <- TRUE

> can.travel <- has.plane.ticket & has.VISA

> print(can.travel)

[1] TRUE

> cannot.travel <- (!has.plane.ticket) | (!has.VISA)

• The mode factor is for categories. A factor can have different levels.

• The mode list. More will taught in Section 2.5.

2.4 vectors, matrices, arrays

Some have probably already noticed a [1] in the front of the R output. This
means that what is returned on this line starts with the element number 1. R is
oriented to handle vectors. A vector can be thought of as sequence of elements
of the same mode. What we manipulated so far were just vectors of length 1.
Let’s see with an example:

> x <- c(1, 2, 3)

> print(x)

[1] 1 2 3

> y <- c("a", "b", "c")

> print(y)

5

[1] "a" "b" "c"

The function +c()+ concatenates all its arguments into one vector. Other
useful functions are seq and rep:

> seq(1, 3)

[1] 1 2 3

> 1:3

[1] 1 2 3

> seq(1, 3, by = 0.5)

[1] 1.0 1.5 2.0 2.5 3.0

> rep(1, 3)

[1] 1 1 1

> rep(1:3, 2)

[1] 1 2 3 1 2 3

Many functions in R are designed to operate on vectors.

> x <- c(-1, 2, 3)

> min(x)

[1] -1

> max(x)

[1] 3

> mean(x)

[1] 1.333333

> x + x

[1] -2 4 6

You can try with other functions defined in the section 2.1.
One important thing in R is what is called the recycling rule. Vectors that

are shorter than they should see their elements recycled when looping through.

> x <- c(-1, 2, 3, 3)

> x + 1

[1] 0 3 4 4

> x + c(1, 2)

[1] 0 4 4 5

6

> x - mean(x)

[1] -2.75 0.25 1.25 1.25

Many other functions than c() prove useful when dealing with vector. Some
are:

• rep(x, y) repeat x y times.

• seq(x, y) generate a sequence of integers from x to y. A syntactic sugar
for rep() is :. 1:10 is equivalent to rep(1,10).

• rev(x) returns x in the reverse order

• sort(x) returns x sorted in ascending order.

Matrices are very convenient objects to make computation. They are vey
similar to vectors.

> m <- matrix(c(1, 2, 3), nrow = 3, ncol = 3)

> m

[,1] [,2] [,3]

[1,] 1 1 1

[2,] 2 2 2

[3,] 3 3 3

> m + m

[,1] [,2] [,3]

[1,] 2 2 2

[2,] 4 4 4

[3,] 6 6 6

Some of the useful matrix facilites are:

matrix multiplication m %*% m

transpose t(m)

diagonal elements diag(m)

eigen values eigen(m)

2.5 list and data frames

A list is also a vector of mode list, but the content of a list can be anything.
This allows to bundle together heterogeneous things.

> list(1:10, c("a", "b", "c", "d"))

[[1]]

[1] 1 2 3 4 5 6 7 8 9 10

[[2]]

[1] "a" "b" "c" "d"

Elements in a list can be named:

> list(a = 1:10, b = c("a", "b", "c", "d"))

7

$a

[1] 1 2 3 4 5 6 7 8 9 10

$b

[1] "a" "b" "c" "d"

A data.frame is a list with a convenient particularity: each of its compo-
nents are vectors of the same length. You can picture it as a table having each
column filled with elements of the same mode. This is particularly convenient
to store most of the datasets:

name age sex married
George 43 MALE TRUE
Anna 14 FEMALE FALSE
Sarah 58 FEMALE FALSE
Tom 35 MALE FALSE
.

Objects data.frame can be attached and detached (functions attach() and
detach() respectively). Their content becomes then directly accessible.

2.6 subseting, indexing

The objects we have presented have several elements. The access to one or more
of these elements is called subseting. It is a very efficient technique in R. We
will show how to do it with vectors, matrices, lists and data frames.

> x <- c(2, 0, 1, 3, 4)

> x[1]

[1] 2

> xIndex <- c(1, 3)

> x[xIndex]

[1] 2 1

The subseting operator is "[". A vector is used to tell which elements to
select. A logical vector can also be used to select elements.

> x[c(TRUE, FALSE, TRUE, FALSE, FALSE)]

[1] 2 1

> isSmall <- (x < 3)

> x[isSmall]

[1] 2 0 1

> indexSmall <- which(isSmall)

> x[indexSmall]

[1] 2 0 1

8

For matrices, we have to specify two vectors of indices

> m <- matrix(1:9, nrow = 3, ncol = 3)

> m

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

> m[1, 1]

[1] 1

> m[1,]

[1] 1 4 7

> m[c(1, 2), c(1, 2)]

[,1] [,2]

[1,] 1 4

[2,] 2 5

> indexDiag <- matrix(rep(1:3, 2), nr = 3, nc = 2)

> m[indexDiag]

[1] 1 5 9

We saw in Section ?? that a list can have named elements. The subseting
can be done by the name, using the operator [with name or a number. Access
to elements is done with the operator [[or the operator "$"

> l <- list(letter = c("a", "b"), number = c(1, 2, 3, 4))

> l

$letter

[1] "a" "b"

$number

[1] 1 2 3 4

> l["letter"]

$letter

[1] "a" "b"

> l[1]

$letter

[1] "a" "b"

> l$letter

9

[1] "a" "b"

> l[[1]]

[1] "a" "b"

For data frames:

> df <- data.frame(name = c("George", "Anna"), age = c(43, 14))

> df

name age

1 George 43

2 Anna 14

> df[1, 1]

[1] George

Levels: Anna George

By default, vectors of character are converted to factor in data.frame.
Subsetting by name can be done with any kind of vector, given that its

elements were previously named. The operator [[introduced for the list subsets
and does not keep the name.

> x <- c(2, 0, 1, 3, 4)

> names(x) <- c("a", "b", "c", "d", "e")

> x[3]

c

1

> x["c"]

c

1

> x[[3]]

[1] 1

2.7 Exercises

• compute with R:
esin(π/16)

1 − esin(π/16)

• generate a vector x of 30 random numbers (normal distribution) using the
function rnorm.

• create a vector y that only contains the positive elements of x.

• create a vector z that censors the negative elements of x with zeros.

10

3 Branching conditions and loops

• if(condition): Tests for condition to be TRUE. If it is the case the block
is executed.

> x <- TRUE

> if (x) {

+ print("x is TRUE")

+ }

[1] "x is TRUE"

• if (condition) . . . else: if (condition) tests for condition to be TRUE. If it is
the case the first block is executed, otherwise the second block is executed.

> x <- FALSE

> if (x) {

+ print("x is TRUE")

+ } else {

+ print("x is FALSE")

+ }

[1] "x is FALSE"

• while (condition): execute the block as long as condition is TRUE.

> x <- 10

> while (x > 0) {

+ x <- (x - 3)

+ }

> x

[1] -2

• for (variable in vector): goes through each element of vector (one after the
other), assign the current element to variable and execute the block.

> x <- c(1, 2, 3)

> for (i in x) {

+ print(i)

+ }

[1] 1

[1] 2

[1] 3

> x <- c("a", "b", "c")

> for (i in x) {

+ print(i)

+ }

[1] "a"

[1] "b"

[1] "c"

11

4 Functions

4.1 writing your own functions

A function is made of arguments and a body. The arguments are what is given to
the function, the body is the ‘machinery’ of the function. Let’s define a function
to calculate the hypothenuse of a triangle:

> hypothenuse <- function(x, y) {

+ z <- sqrt(x^2 + y^2)

+ return(z)

+ }

> hypothenuse(1, 1)

[1] 1.414214

A function can return something (i.e. gives back a result). Our function
returns a result. We indicate what to return with the function return() (surprise
. . .).

The arguments are (x,y). It is possible to define optional arguments (or
arguments with a default value). This is achieved in our example by doing
something like function(x, y=2).

4.2 editing a function

The function edit can be used to edit R objects, including functions. An editor
is opened with the source code of the function.

hypo.modif <- edit(hypothenuse)

The default editor may depends on your installation, but unless exotic set-
tings it should be the notepad for Windows and vi for Unices. You can specify
an alternative editor with the parameter editor. Example:

hypo.modif <- edit(hypothenuse, editor="nedit")

or with Microsoft Windows:

hypo.modif <- edit(hypothenuse, editor="notepad")

To make correction to an existing function, one can use fix:

fix(hypothenuse)

An alternative practice is to use your favorite text editor as copy/paste your
code in the R console.

4.3 Miscellaneous useful functions

• str(object). Dump the structure of the object.

• traceback(). Give indications about where the last error occured.

• object.size(object). Return an aproximate of the memory used by an
object

12

• gc(). Garbage collector. ‘Clean’ the memory and give the memory usage.

• capabilities(). Tell about the capabilities of the version of R you are
using.

4.4 Exercises

• create a function cube: cube(x) = x3

• create a function factorial: fact(y) =y!

• create a function f: f(x, y) = cube(x) − fact(y)

5 Graphics

R is a powerful tool to generate graphics. Vizualization of data can help the
analysis.

5.1 plot

The call to plot(object) will create a plot for the object.

> x <- c(1, 2, -2, 3, 4)

> plot(x)

1 2 3 4 5

−
2

−
1

0
1

2
3

4

Index

x

Several objects
can be passed to the plot function.

13

> x <- rnorm(4)

> y <- rnorm(4)

> plot(x, y)

−2.0 −1.5 −1.0 −0.5 0.0 0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

x

y

The function plot
accepts optional parameters (see figure 1). They are too many to be detailed
here. We only introduce few of them. The parameter type can be ”p” for points,
”l” for lines, ”b” for both, ”s” for steps, ”n” for nothing.

The behavior of the function plot changes according to the object(s) it is
used with.

5.2 other high-level plots

• barplot(x): barplot of values in x

• hist(x): histogram for the values in x

• pie(x): pie chart of values in x

• pairs(m): matrix of scatter plot of matrix m.

• image(m): image of a matrix m.

• boxplot(x, y, ...): box and whiskers plot of vectors x, y, . . .

5.3 low-level graphical functions

• points(x, y): add points to a plot at coordinates (x,y).

• lines(x, y): add lines to a plot, using coordinates (x,y).

• text(x, y, labels): a the labels at the coordinates (x,y).

14

> par(mfrow = c(2, 2))

> plot(x, y)

> plot(x, y, pch = 1, col = "red")

> plot(x, y, pch = 1, col = c("red", "red", "green", "red"))

> plot(x, y, type = "l")

0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5

x

y

0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5

x

y

0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5

x

y

0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5

x

y

Figure 1: The upper left plot is the result of plot(x, y), upper right plot is the
result of plot(x, y, pch=1, col=”red”), the lower left plot is the result of plot(x, y,
pch=1, col=c(”red”, ”red”, ”green”, ”red”)), and the lower right plot is the result
of plot(x, y, type=”l”) (the numbers are added aftwards and correspond to the
order of the values in x and y).

15

5.4 other nifty things

par(mfrow=c(x, y)) splits your ploting device into x rows and y columns.

5.5 printing your plot

R functions with devices. We show below how to print in a postscript device.

dev.print(postscript, file="where/myfile.ps")

5.6 Exercise

• generate a vector x with 100 random values using the function rnorm
(mean zero, standard deviation equal to one), then plot an histogram.
Repeat the operation few times. You can observe differences (sampling
effect).

• generate a vector y with 100 random values using the function rnorm
(mean zero, standard deviation equal to one). Make a scatter plot x vs y,
using different 4 different colors (one for x < 0, y < 0, one for x < 0, y > 0,
one for x > 0, y > 0 and one for x > 0, y < 0).

6 Reading and writing files

6.1 R scripts

• source(filename): read and execute R code in the file filename.

6.2 data files

• read.table(filename): read the data file filename and store data in a
data.frame. A lot of optional parameters can be specified. Useful ones
are sep to specify the separator used, skip to skip lines.

7 Packages

Packages of objects can be loaded using the function library. By default the
packages base and ctest (classical tests) are loaded.

For example, to load the package mva (MultiVariate Analysis):

> library(mva)

Documented topics in a package can be listed with the function library,
using the parameter help:

> library(help = mva)

16

8 To know more

• Introduction to R, by W.M. Venables, D.M. Smith and the R Develope-
ment Core Team. It can be downloaded from
http://cran.r-project.org/doc/manuals/R-intro.pdf

• R for Beginners, by Emmanuel Paradis. It can be downloaded from:
http://cran.r-project.org/doc/contrib/rdebuts_en.pdf

. . . and remember to use the help system !

9 vocabulary

You will find here a summary explanation for some of the technical terms. Refer
to your programming course (or teacher) for details.

array Table of elements of the same mode. A matrix is an array

character mode for strings of characters.

compilation Transform source code into executable code.

complex mode for complex numbers

data.frame list in which all the elements have the same length.

environment can thought of as a working space. Objects are in a given en-
vironment. The default environment for user defined objects is called
.GlobaEnv.

factor mode for factors (i.e. categories).

integer mode for integers

list objects constituted of ordered components of independant mode. Compo-
nents can be called by position number or name.

logical two values possible TRUE or FALSE.

matrix 2-ways arrays. Elements can be accessed knowing their location (row
number and column number)

mode Sometimes called type. The main ones are: integer, numeric, com-

plex, logical, character, factor and list.

numeric mode real numbers.

source code The program (as written by the programmer).

subset extract a subset of an object. [in general, ”[[” to access an element of
a list.

type See mode

vector Sequence of elements of the same mode

17

	Introduction
	History and availability
	Why should we use R ?
	Starting (and exiting) R
	Interactive browsing of examples

	Basics about the language
	Like a pocket calculator (just bigger)
	variables (objects)
	mode (or type)
	vectors, matrices, arrays
	list and data frames
	subseting, indexing
	Exercises

	Branching conditions and loops
	Functions
	writing your own functions
	editing a function
	Miscellaneous useful functions
	Exercises

	Graphics
	plot
	other high-level plots
	low-level graphical functions
	other nifty things
	printing your plot
	Exercise

	Reading and writing files
	R scripts
	data files

	Packages
	To know more
	vocabulary

