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SUMMARY

We present a new class of statistical models, designed for life history analysis of plants and
animals, that allow joint analysis of data on survival and reproduction over multiple years,
allow for variables having different probability distributions, and correctly account for the
dependence of variables on earlier variables. We illustrate their utility with an analysis of
data taken from an experimental study of Echinacea angustifolia sampled from remnant
prairie populations in western Minnesota. These models generalize both generalized linear
models and survival analysis. The joint distribution is factorized as a product of conditional
distributions, each an exponential family with the conditioning variable being the sample
size of the conditional distribution. The model may be heterogeneous, each conditional
distribution being from a different exponential family. We show that the joint distribution
is from a flat exponential family and derive its canonical parameters, Fisher information
and other properties. These models are implemented in an R package ‘aster’ available from
the Comprehensive R Archive Network, CRAN.

Some key words: Conditional exponential family; Flat exponential family; Generalized linear model; Graphical
model; Maximum likelihood.

1. INTRODUCTION

This article introduces a class of statistical models we call ‘aster models’. They were
invented for life history analysis of plants and animals and are best introduced by an
example about perennial plants observed over several years. For each individual planted,
at each census, we record whether or not it is alive, whether or not it flowers, and its
number of flower heads. These data are complicated, especially when recorded for several
years, but simple conditional models may suffice. We consider mortality status, dead or
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Fig. 1. Graph for Echinacea aster data.
Arrows go from parent nodes to child
nodes. Nodes are labelled by their asso-
ciated variables. The only root node is
associated with the constant variable 1. Mj

is the mortality status in year 2001 + j . Fj

is the flowering status in year 2001 + j . Hj

is the flower head count in year 2001 + j .
The Mj and Fj are Bernoulli conditional on
their parent variables being one, and zero
otherwise. The Hj are zero-truncated Pois-
son conditional on their parent variables

being one, and zero otherwise.

alive, to be Bernoulli given the preceding mortality status. Similarly, flowering status given
mortality status is also Bernoulli. Given flowering, the number of flower heads may have
a zero-truncated Poisson distribution (Martin et al., 2005). Figure 1 shows the graphical
model for a single individual.

This aster model generalizes both discrete time Cox regression (Cox, 1972; Breslow, 1972,
1974) and generalized linear models (McCullagh & Nelder, 1989). Aster models apply to
any similar conditional modelling. We could, for example, add other variables, such as
seed count modelled conditional on flower head count.

A simultaneous analysis that models the joint distribution of all the variables in a life
history analysis can answer questions that cannot be addressed through separate analyses
of each variable conditional on the others.

Joint analysis also deals with structural zeros in the data; for example, a dead individual
remains dead and cannot flower, so in Fig. 1 any arrow that leads from a variable that
is zero to another variable implies that the other variable must also be zero. Such zeros
present intractable missing data problems in separate analyses of individual variables. Aster
models have no problem with structural zeros; likelihood inference automatically handles
them correctly.

Aster models are simple graphical models (Lauritzen, 1996, §3·2·3) in which the joint
density is a product of conditionals as in equation (1) below. No knowledge of graphical
model theory is needed to understand aster models. One innovative aspect of aster models
is the interplay between two parameterizations described in §§2·2 and 2·3 below. The
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‘conditional canonical parameterization’ arises when each conditional distribution in the
product is an exponential family and we use the canonical parameterization for each. The
‘unconditional canonical parameterization’ arises from observing that the joint model is
a full flat exponential family (Barndorff-Nielsen, 1978, Ch. 8) and using the canonical
parameters for that family, defined by equation (5) below.

2. ASTER MODELS

2·1. Factorization and graphical model

Variables in an aster model are denoted by Xj , where j runs over the nodes of a graph. A
general aster model is a chain graph model (Lauritzen, 1996, pp. 7, 53) having both arrows,
corresponding to directed edges, and lines, corresponding to undirected edges. Figure 1 is
special, having only arrows. Arrows go from parent to child, and lines between neighbours.
Nodes that are not children are called root nodes. Those that are not parents are called
terminal nodes.

Let F and J denote root and nonroot nodes. Aster models have very special chain graph
structure determined by a partition G of J and a function p : G → J ∪ F . For each G ∈ G
there is an arrow from p(G) to each element of G and a line between each pair of elements
of G. For any set S, let XS denote the vector whose components are Xj , j ∈ S. The graph
determines a factorization

pr(XJ |XF ) = ∏
G∈G

pr{XG|Xp(G)}; (1)

compare with equation (3.23) in Lauritzen (1996).
Elements of G are called chain components because they are connectivity components

of the chain graph (Lauritzen, 1996, pp. 6–7). Since Fig. 1 has no undirected edge, each
node is a chain component by itself. Allowing nontrivial chain components allows the
elements of XG to be conditionally dependent given Xp(G) with merely notational changes
to the theory. In our example in §5 the graph consists of many copies of Fig. 1, one
for each individual plant. Individuals have no explicit representation. For any set S, let
p−1(S) denote the set of G such that p(G) ∈ S. Then each subgraph consisting of one
G ∈ p−1(F ), its descendants, children, children of children, etc., and arrows and lines
connecting them, corresponds to one individual. If we make each such G have a distinct
root element p(G), then the set of descendants of each root node corresponds to one
individual. Although all individuals in our example have the same subgraph, this is not
required.

2·2. Conditional exponential families

We take each of the conditional distributions in (1) to be an exponential family having
canonical statistic XG that is the sum of Xp(G) independent and identically distributed
random vectors, possibly a different such family for each G. Conditionally, Xp(G) = 0
implies that XG = 0G almost surely. If j =| p(G) for any G, then the values of Xj are
unrestricted. If the distribution of XG given Xp(G) is infinitely divisible, such as Poisson or
normal, for each G ∈ p−1({j }), then Xj must be nonnegative and real-valued. Otherwise,
Xj must be nonnegative and integer-valued.



418 CHARLES J. GEYER, STUART WAGENIUS AND RUTH G. SHAW

The loglikelihood for the whole family has the form

∑
G∈G
{ ∑

j∈G

Xjθj − Xp(G)ψG(θG)} = ∑
j∈J

Xjθj − ∑
G∈G

Xp(G)ψG(θG), (2)

where θG is the canonical parameter vector for the Gth conditional family, having
components θj , j ∈ G, and ψG is the cumulant function for that family (Barndorff-Nielsen,
1978, pp. 105, 139, 150) that satisfies

EθG
(XG|Xp(G)) = Xp(G)∇ψG(θG) (3)

varθG
(XG|Xp(G)) = Xp(G)∇2ψG(θG), (4)

where varθ (X) is the variance-covariance matrix of X and ∇2ψ(θ) is the matrix of second
partial derivatives of ψ (Barndorff-Nielsen, 1978, p. 150).

2·3. Unconditional exponential families

Collecting terms with the same Xj in (2), we obtain

∑
j∈J

Xj {θj − ∑
G∈p−1({j })

ψG(θG)}− ∑
G∈p−1(F )

Xp(G)ψG(θG)

and see that

ϕj = θj − ∑
G∈p−1({j })

ψG(θG), j ∈ J, (5)

are the canonical parameters of an unconditional exponential family with canonical statis-
tics Xj . We now write X instead of XJ , ϕ instead of ϕJ , and so forth, and let 〈X,ϕ〉 denote the
inner product ∑j Xjϕj . Then we can write the loglikelihood of this unconditional family as

l(ϕ) = 〈X,ϕ〉 − ψ(ϕ), (6)

where the cumulant function of this family is

ψ(ϕ) = ∑
G∈p−1(F )

Xp(G)ψG(θG). (7)

All of the Xp(G) in (7) are at root nodes, and hence are nonrandom, so that ψ is a
deterministic function. Also, the right-hand side of (7) is a function of ϕ by the logic of
exponential families (Barndorff-Nielsen, 1978, pp. 105 ff.).

The system of equations (5) can be solved for the θj in terms of the ϕj in one pass through
the equations in any order that finds θj for children before parents. Thus (5) determines an
invertible change of parameter.

2·4. Canonical affine models

One of the desirable aspects of exponential family canonical parameter affine models
defined by reparameterization of the form

ϕ = a + Mβ, (8)
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where a is a known vector, called the origin, and M is a known matrix, called the model
matrix, is that, because 〈X,Mβ〉 = 〈MTX,β〉, the result is a new exponential family with
canonical statistic

Y = MTX (9)

and canonical parameter β. The dimension of this new family will be the dimension of β,
if M has full rank.

As is well known (Barndorff-Nielsen, 1978, p. 111), the canonical statistic of an
exponential family is minimal sufficient. Since we have both conditional and unconditional
families in play, we stress that this well-known result is about unconditional families.
A dimension reduction to a low-dimensional sufficient statistic like (9) does not occur
when the conditional canonical parameters θ are modelled affinely, and this suggests that
affine models for the unconditional parameterization may be scientifically more interesting
despite their more complicated structure.

2·5. Mean-value parameters

Conditional mean values

ξj = EθG
(Xj |Xp(G)) = Xp(G)

∂ψG(θG)

∂θj

, j ∈ G, (10)

are not parameters because they contain random data Xp(G), although they play the role of
mean-value parameters when we condition on Xp(G), treating it as constant. By standard
exponential family theory (Barndorff-Nielsen, 1978, p. 121), ∇ψG is an invertible change
of parameter.

Unconditional mean-value parameters are the unconditional expectations

τ = Eϕ(X) = ∇ψ(ϕ). (11)

By standard theory, ∇ψ : ϕ �→ τ is an invertible change of parameter. The unconditional
expectation in (11) can be calculated using the iterated expectation theorem

Eϕ(Xj ) = Eϕ(Xp(G))
∂ψG(θG)

∂θj

, j ∈ G, (12)

where θ is determined from ϕ by solving (5). The system of equations (12) can produce the
τ j in one pass through the equations in any order that finds τ j for parents before children.

3. LIKELIHOOD INFERENCE

3·1. Conditional models

The score ∇l(θ) for conditional canonical parameters is particularly simple, having
components

∂l(θ)

∂θj

= Xj − Xp(G)

∂ψG(θG)

∂θj

, j ∈ G, (13)

and, if these parameters are modelled affinely as in (8) but with ϕ replaced by θ , then

∇l(β) = ∇l(θ)M. (14)
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The observed Fisher information matrix for θ , which is the matrix −∇2l(θ), is block
diagonal with

− ∂2l(θ)

∂θi∂θj

= Xp(G)

∂2ψG(θG)

∂θi∂θj

, i, j ∈ G, (15)

the only nonzero entries. The expected Fisher information matrix for θ is the unconditional
expectation of the observed Fisher information matrix, calculated using (15) and (12).
If I (θ) denotes either the observed or the expected Fisher information matrix for θ and
similarly for other parameters, then

I (β) = MTI (θ)M. (16)

3·2. Unconditional models

The score ∇l(ϕ) for unconditional canonical parameters is, as in every unconditional
exponential family, ‘observed minus expected’:

∂l(ϕ)

∂ϕj

= Xj − Eϕ(Xj ),

the unconditional expectation on the right-hand side being evaluated by using (12). If these
parameters are modelled affinely as in (8), then we have (14) with θ replaced by ϕ. Note
that (13) is not ‘observed minus conditionally expected’ if considered as a vector equation
because the conditioning would differ amongst components.

Second derivatives with respect to unconditional canonical parameters of an exponential
family are nonrandom, and hence observed and expected Fisher information matrices I (ϕ)

are equal, given by either of the expressions ∇2ψ(ϕ) and varϕ(X). Fix θ and ϕ related by
(5). For i, j ∈ G, the iterated covariance formula gives

covϕ(Xi,Xj ) = ∂2ψG(θG)

∂θi∂θj

Eϕ(Xp(G))+ ∂ψG(θG)

∂θi

∂ψG(θG)

∂θj

varϕ(Xp(G)). (17)

Otherwise we may assume that j ∈ G and i is not a descendant of j so that
covϕ(Xi,Xj |Xp(G)) = 0 because Xj is conditionally independent given Xp(G) of all variables
except itself and its descendants. Then the iterated covariance formula gives

covϕ(Xi,Xj ) = ∂ψG(θG)

∂θj

covϕ(Xi,Xp(G)). (18)

Expectations having been calculated using (12), variances, the case i = j in (17), are
calculated in one pass through (17) in any order that deals with parents before children.
Then another pass using (17) and (18) gives covariances. The information matrix for β is
given by (16) with θ replaced by ϕ.

3·3. Prediction

By ‘prediction’, we only mean evaluation of a function of estimated parameters, what
the predict function in R does for generalized linear models. In aster models we have
five different parameterizations of interest, β, θ , ϕ, ξ and τ . The Fisher information matrix
for β, already described, handles predictions of β, so this section is about ‘predicting’ the
remaining four. One often predicts for new individuals having different covariate values
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from the observed individuals. Then the model matrix M̃ used for the prediction is different
from that used for calculating β̂ and the Fisher information matrix I (β̂), either observed
or expected.

Let η be the affine predictor, i. e. η = θ for conditional models and η = ϕ for
unconditional models, let ζ be any one of θ , ϕ, ξ and τ , and let f : η �→ ζ . Suppose
we wish to predict

g(β) = h(ζ ) = h{f (M̃β)}. (19)

Then, by the chain rule, (19) has derivative

∇g(β) = ∇h(ζ )∇f (η)M̃, (20)

and, by the ‘usual’ asymptotics of maximum likelihood and the delta method, the asymptotic
distribution of the prediction h(ζ̂ ) = g(β̂) is

N[g(β), {∇g(β̂)}I (β̂)−1{∇g(β̂)}T],
where ∇g(β̂) is given by (20) with η̂ = M̃β̂ plugged in for η and ζ̂ = f (η̂) plugged in for ζ .
We write ‘predictions’ in this complicated form to separate the parts of the specification, the
functions h and ∇h and the model matrix M̃, that change from application to application
from the part ∇f that does not change and can be dealt with by computer; see Appendix A
of the technical report at http://www.stat.umn.edu/geyer/aster for details.

To predict mean-value parameters one must specify new ‘response’ data Xj as well
as new ‘covariate’ data in M̃. Unconditional mean-value parameters τ depend on Xj ,
j ∈ F , whereas conditional mean-value parameters ξ depend on Xj , j ∈ J ∪ F . It is often
interesting, however, to predict ξ for hypothetical individuals with Xj = 1 for all j , thus
obtaining conditional mean values per unit sample size.

4. SOFTWARE

We have released an R (R Development Core Team, 2004) package aster that
fits, tests, predicts and simulates aster models. It uses the R formula mini-language,
originally developed for  and S (Wilkinson & Rogers, 1973; Chambers & Hastie,
1992) so that model fitting is very like that for linear or generalized linear models. The R
functionsummary.asterprovides regression coefficients with standard errors, z statistics
and p-values; anova.aster provides likelihood ratio tests for model comparison;
predict.aster provides the predictions with standard errors described in §3·3; raster
generates random aster model data for simulation studies or parametric bootstrap
calculations. The package is available from CRAN (http://www.cran.r-project.org) and
is open source.

The current version of the package limits the general model described in this article in
several ways. In predictions, only linear h are allowed in (19), but this can be worked
around. For general h, observe that h(ζ̂ ) and ATζ̂ , where A = ∇h(ζ ), have the same
standard errors. Thus, obtain h(ζ̂ ) by one call to predict.aster and the standard
errors for ATζ̂ , where A = ∇h(ζ̂ ) by a second call. In models, the only conditional families
currently implemented are Bernoulli, Poisson, k-truncated Poisson, negative binomial and
k-truncated negative binomial, but adding another one-parameter exponential family would
require only implementation of its ψ , ψ ′ and ψ ′′ functions and its random variate generator.
Multiparameter conditional families, chain components, are not yet implemented. Allowing
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Table 1. Tests for model comparison. The model formulae are given
above and the analysis of deviance below; deviance is double the log

likelihood ratio

Model 1: resp ∼ varb + level:(nsloc + ewloc)
Model 2: resp ∼ varb + level:(nsloc + ewloc) + hdct * pop - pop
Model 3: resp ∼ varb + level:(nsloc + ewloc) + hdct * pop
Model 4: resp ∼ varb + level:(nsloc + ewloc) + level * pop.

Model Model Model Test Test Test
Number d. f. Deviance d. f. Deviance p-value

1 15 2728·72
2 21 2712·54 6 16·18 0·013
3 27 2684·86 6 27·67 0·00011
4 33 2674·70 6 10·17 0·12

d. f., degrees of freedom.

terminal nodes that are two-parameter normal or allowing child nodes that are multinomial
given a common parent would require more extensive changes to the package.

5. EXAMPLE

Data were collected on 570 individuals of Echinacea angustifolia, each having the
data structure shown in Fig. 1. These plants were sampled as seeds from seven remnant
populations that are surviving fragments of the tall-grass prairie that a century ago
covered western Minnesota and other parts of the Great Plains of North America. The
plants were experimentally randomized at the time of planting into a field within 6.5
km of all populations of origin. The dataset contains three predictor variables: ewloc
and nsloc give east-west and north-south positions of individuals and pop gives their
remnant population of origin. To use the R formula mini-language we need to create more
variables: resp is a vector comprising the response variables, the Mj , Fj and Hj ; level
is categorical, naming the type of response variable, with values M, F and H ; year is
categorical, giving the year; varb is the interaction of level and year; and hdct is short
for level = H .

We fitted many models; see Appendix D of the technical report at http://www.stat.umn.
edu/geyer/aster for details. Scientific interest focuses on the model comparison shown in
Table 1.

The models are nested. The affine predictor for Model 4 can be written

ϕj = µLj ,Yj
+ αLj

Uj + βLj
Vj + γ Lj ,Pj

, (21)

where Lj , Yj , Uj , Vj and Pj are level, year, ewloc, nsloc and pop, respectively,
and the alphas, betas and gammas are regression coefficients. Model 3 is the submodel of
Model 4 that imposes the constraint γ M,P = γ F,P , for all populations P . Model 2 is the
submodel of Model 3 that imposes the constraint γ M,P = γ F,P = 0, for all P . Model 1 is
the submodel of Model 2 that imposes the constraint γ L,P = 0, for all L and P .

All models contain the graph node effect, varb or µLj ,Yj
, and the quantitative spatial

effect, level:(nsloc + ewloc) or αLj
Uj + βLj

Vj , which was chosen by comparing
many models; for details see the technical report. We explain here only differences amongst
models, which involve only categorical predictors. In an unconditional aster model, which
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these are, such terms require the maximum likelihood estimates of mean-value parameters
for each category, summed over all individuals in the category, to match their observed
values: ‘observed equals expected’. Model 4 makes observed equal expected for total head
count �jHj , for total flowering �jFj , and for total survival �jMj within each population.
Model 3 makes observed equal expected for total head count �jHj and for total nonhead
count �j(Mj + Fj) within each population. Model 2 makes observed equal expected for
total head count �jHj within each population.

From purely statistical considerations, Model 3 is the best of these four nested models.
Model 4 does not fit significantly better. Model 2 fits significantly worse. It is difficult
to interpret Model 3 scientifically, because ‘nonhead count’ �j(Mj + Fj ) is unnatural, in
effect scoring 0 for dead, 1 for alive without flowers or 2 for alive with flowers.

Model 2 is the model of primary scientific interest. Evolutionary biologists are
fundamentally interested in fitness, but it is notoriously difficult to measure; see Beatty
(1992), Keller (1992) and Paul (1992). The fitness of an individual may be defined as its
lifetime contribution of progeny to the next generation. For these data the most direct
surrogate measure for fitness is total head count �jHj . The currently available data
represent a small fraction of this plant’s lifespan. To obtain more complete measures
of fitness, we are continuing these experiments and collecting these data for successive
years.

Biologists call all our measured variables, the Mj , Fj and Hj , ‘components of fitness’.
Since Mj and Fj contribute to fitness only through Hj , in an aster model the unconditional
expectation of Hj , its unconditional mean-value parameter, completely accounts for the
contributions of Mj and Fj . Strictly speaking, this is not quite true, since we do not have
Hj measured over the whole life span, so the last Mj contains the information about
future reproduction, but it becomes more true as more data are collected in future years.
Moreover, we have no data about life span and do not wish to inject subjective opinion
about future flower head count into the analysis.

The statistical point of this is that the Mj and Fj are in the model only to produce the
correct stochastic structure. If we could directly model the marginal distribution of the
Hj , but we cannot, we would not need the other variables. They are ‘nuisance variables’
that must be in the model but are of no interest in this particular analysis; the mean-value
parameters for those variables are nuisance parameters. Model 3 is the best according to
the likelihood-ratio test, but does it fit the variables of interest better than Model 2? We do
not know of an established methodology for addressing this issue, so we propose looking
at confidence intervals for the mean-value parameters for total flower head count shown in
Fig. 2.

Although we have no formal test to propose, we claim that it is obvious that Model 3
is no better than Model 2 at ‘predicting’ the best surrogate of expected fitness. We take
this as justification for using Model 2 in scientific discussion and infer from it significant
differences among the populations in flower head count and, thus, fitness.

It being difficult to interpret Model 3 scientifically, Model 4 is the next larger readily
interpretable model. Model 4 does fit significantly better than Model 2, p = 0.00016, which
implies differences among populations in mortality and flowering, the Mj and Fj , that
may be of scientific interest even though they make no direct contribution to fitness, since
Model 2 already fully accounts for their contributions through Hj .

Note that we would have obtained very different results had we used a conditional
model, not shown; see §D.3·2 of the technical report. The parameters of interest are
unconditional expectations of total flower head count. This alone suggests an unconditional
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Fig. 2. Confidence intervals for total head count. Shown
are 95% nonsimultaneous confidence intervals for the
unconditional expectation of total flower head count, all 3
years, for individuals from different populations and central
spatial location. Solid bars are based on Model 2 in Table 1,

and dashed bars are based on Model 3 in Table 1.

model. Furthermore, we see in (5) that unconditional aster models ‘mix levels’ passing
information up from children to parents. This is why Model 2 in our example was
successful in predicting total head count while only modelling pop effects at head
count nodes. Since a conditional aster model does not mix levels in this way, it must
model all levels and so usually needs many more parameters than an unconditional
model.

6. DISCUSSION

The key idea of aster models, as we see it, is the usefulness of what we have called
unconditional aster models, which have low-dimensional sufficient statistics (9). Following
Geyer & Thompson (1992), who argued in favour of exponential family models with
sufficient statistics chosen to be scientifically interpretable, an idea they attributed to Jaynes
(1978), we emphasize the value of these models in analyses of life histories and overall fitness.

We do not insist, however, the R package aster is even-handed with respect to
conditional and unconditional models and conditional and unconditional parameters.
Users may use whatever seems best to them. Any joint analysis is better than any separate
analyses of different variables. We have, however, one warning. In an unconditional
aster model, as in all exponential family models, the map from canonical parameters to
mean-value parameters is monotone; with sufficient statistic vector Y given by (9) having
components Yk we have

−∂2l(β)

∂β2
k

= ∂Eβ(Yk)

∂βk

> 0. (22)
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This gives regression coefficients their simple interpretation: an increase in βk causes an
increase in Eβ(Yk), other betas being held constant. The analogue of (22) for a conditional
model is

−∂2l(β)

∂β2
k

= ∂

∂βk
∑

G∈G
∑

j∈G

Eβ(Xj |Xp(G))mjk > 0, (23)

where mjk are components of M. Since we cannot move the sums in (23) inside the
conditional expectation, there is no corresponding simple interpretation of regression
coefficients. Conditional aster models are therefore algebraically simple but statistically
complicated. Unconditional aster models are algebraically complicated but statistically
simple. They can be simply explained as flat exponential families having the desired
sufficient statistics. They are the aster models that behave according to the intuitions
derived from linear and generalized linear models.

We saw in our example that aster models allowed us to model fitness successfully. In
medical applications, Darwinian fitness is rarely interesting, but aster models may allow
data on mortality or survival to be analysed in combination with other data, such as quality
of life measures.
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