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abstract: The lifetime fitnesses of individuals comprising a pop-
ulation determine its numerical dynamics, and genetic variation in
fitness results in evolutionary change. This dual importance of in-
dividual fitness is well understood, but empirical fitness records gen-
erally violate the assumptions of standard statistical approaches. This
problem has undermined comprehensive study of fitness and im-
peded empirical synthesis of the numerical and genetic dynamics of
populations. Recently developed aster models remedy this problem
by explicitly modeling the dependence of later-expressed components
of fitness (e.g., fecundity) on those expressed earlier (e.g., survival
to reproduce). Moreover, aster models employ different sampling
distributions for different components of fitness (e.g., binomial for
survival over a given interval and Poisson for fecundity). Analysis is
done by maximum likelihood, and the resulting distributions for
lifetime fitness closely approximate observed data. We illustrate the
breadth of aster models’ utility with three examples demonstrating
estimation of the finite rate of increase, comparison of mean fitness
among genotypic groups, and analysis of phenotypic selection. Aster
models offer a unified approach to addressing the breadth of ques-

* Corresponding author; e-mail: rshaw@superb.ecology.umn.edu.

† E-mail: charlie@stat.umn.edu.

‡ E-mail: swagenius@chicagobotanic.org.

§ E-mail: helen_hangelbroek@hotmail.com.

k E-mail: jetterso@d.umn.edu.

Am. Nat. 2008. Vol. 172, pp. E35–E47. � 2008 by The University of Chicago.
0003-0147/2008/17201-42689$15.00. All rights reserved.
DOI: 10.1086/588063

tions in evolution and ecology for which life-history data are
gathered.

Keywords: Chamaecrista fasciculata, community genetics, demogra-
phy, Echinacea angustifolia, fitness components, Uroleucon rudbeckiae.

The fitness of an individual is well understood as its con-
tribution, in offspring, to its population. Fitness has both
evolutionary significance, as an individual’s contribution
to a population’s subsequent genetic composition, and
ecological significance, as the numerical contribution to a
population’s growth. The simplicity of these closely linked
ideas belies serious complications that arise in empirical
studies. Lifetime fitness comprises multiple components
of fitness expressed over possibly many intervals. As a
result, the distribution of fitness, even for a synchronized
cohort in the absence of systematic sources of variation,
is typically multimodal, with a discrete mode at 0, and
highly skewed, thus corresponding to no known para-
metric distribution. This problem has long been acknowl-
edged (e.g., Mitchell-Olds and Shaw 1987; Stanton and
Thiede 2005) and has severely undermined efforts to link
ecological and evolutionary inference, yet no single, rig-
orously justified approach has been available for analysis
of lifetime fitness.

A new statistical approach, aster modeling, serves this
role. Aster models generate the overall likelihood for a set
of components of fitness expressed through the lives of
individuals. Within a single analysis, aster analysis models
different fitness components with different statistical dis-
tributions, as appropriate, and accounts for the depen-
dence of fitness components expressed later in the life span
on those expressed earlier. The statistical theory for aster
models is given by Geyer et al. (2007). Here, we review
the limitations of previous approaches to analysis of life
histories, describe aster models, and present three empir-
ical examples to illustrate the utility of aster modeling as
a comprehensive approach to analysis of life-history data.
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The Problem and Previous Efforts to Address It

Individual fitness realized over a life span typically does
not conform to any well-known distribution that is ame-
nable to parametric statistical analysis. In contrast, indi-
vidual components of fitness, such as survival to age x,
reproduction at age x, and the number of young produced
at age x, generally conform much more closely to simple
parametric distributions. For this reason, components of
fitness are sometimes analyzed separately to obviate the
problem of the distribution of lifetime fitness. For ex-
ample, in a study of genetic variation in response to con-
specific density of a population of the perennial plant Sal-
via lyrata, Shaw (1986) reported separate analyses of
survival and size of the survivors. Implicitly, this approach
considers size, or in other cases, fecundity, conditional on
survival. Though the statistical assumptions underlying the
analyses tend to be satisfied, they offer no way to combine
the analyses to yield inferences about overall fitness.

Analyses of overall fitness commonly use total fecundity
as the measure of fitness, assigning fecundity of 0 to in-
dividuals that died before reproduction. When observa-
tions are available for replicate individuals, a variant of
this method treats fitness as the product of the proportion
surviving and the mean fecundity of survivors (e.g., Be-
laoussoff and Shore 1995; Galloway and Etterson 2007).
In both cases, the resulting distribution is actually a mix-
ture of underlying discrete and (quasi)continuous distri-
butions, yet analyses have generally treated it as a single,
continuous response despite its skewness, multimodality,
and discrete mode at 0 such that no transformation yields
a distribution suitable for parametric statistical analysis.
Authors frequently remark on the awkwardness of these
distributions (e.g., Etterson 2004) but rarely publish fitness
distributions. Antonovics and Ellstrand (1984), however,
presented the extremely skewed distribution of lifetime
reproductive output (their fig. 2) from their experimental
studies of frequency-dependent selection in the perennial
grass Anthoxanthum odoratum. Finding no transformation
that yielded a normal distribution suitable for ANOVA,
they assessed the robustness of their inferences by applying
three distinct analyses (categorical analysis of discrete fe-
cundity classes, ANOVA of means, and nonparametric
analysis). In their study, results of the three analyses were
largely consistent, but, in general, results are likely to differ.

Others have noted the importance of complete account-
ing of life history in inferring fitness or population growth
rate, as well as evaluation of its sampling variation, and
have presented methods to accomplish this. Caswell (2001)
and Morris and Doak (2002) explain how to obtain pop-
ulation projection matrices from life-history records and,
from them, to estimate population growth rate. They also
describe methods for evaluating sampling variation and

acknowledge statistically problematic aspects of these
methods. Specifically, Caswell (2001, p. 304) notes that the
delta method and other series approximations assume both
that variances of the elements of a population projection
matrix are small and that the population growth rate is
normally distributed. It is often further assumed that all
the parameters are independent (Caswell 2001, p. 302).
These assumptions are likely to be violated in many cases.
Consequently, Caswell (2001) recommended resampling
approaches, first applied in this context by Lenski and
Service (1982).

Recent efforts to evaluate the nature of selection have
likewise taken a comprehensive demographic approach.
McGraw and Caswell (1996) considered individual life his-
tories but chose the maximum eigenvalue of an individ-
ual’s Leslie matrix (l) as its fitness measure. They regressed
l on the fitness components, age at reproduction and
lifetime reproductive output, to estimate selection but
noted violation of the assumption of normality of residuals
required for statistical testing. Van Tienderen (2000) ad-
vocated an alternative approach involving evaluation of
the relationships between each component of fitness and
the phenotypic traits of interest via separate multiple re-
gression analyses to obtain the selection gradients for dif-
ferent episodes of selection (Lande and Arnold 1983).
These selection gradients are then weighted by the elas-
ticities (Caswell 2001) of each component of fitness ob-
tained from analysis of the appropriate population pro-
jection matrix. Using this method, Coulson et al. (2003)
also noted violation of the usual distributional assump-
tions. Moreover, because the method combines results
from multiple analyses, it does not fully account for sam-
pling variation. Methods targeting the problem of zero-
inflated data (i.e., many observations of 0 distorting a
distribution) have also been proposed (Cheng et al. 2000;
Dagne 2004; Martin et al. 2005), but these methods also
do not generalize readily for inference in the wide range
of contexts that life-history data can, in principle, address.

Inference of Individual Fitness with Aster Models

We present aster models (Geyer et al. 2007) for analysis
of life-history records as a general, statistically sound ap-
proach to diverse questions in evolution and ecology. Two
properties of life-history data are central to the statistical
challenges that aster models address. First, the expression
of an individual’s life history at one stage depends on its
status at earlier stages. For example, observation of an
individual’s fecundity at one stage is contingent on its
survival to that stage. Second, no single parametric dis-
tribution is generally suitable for modeling all components
of fitness, for example, survival and fecundity. The aster
approach jointly models the components of fitness using
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Figure 1: Graphical models for our three examples. Each node of a graph is associated with a variable; root nodes have the constant 1, indicating
presence of an individual at the outset. Arrows lead from one life-history component to another that immediately depends on it (from predecessor
node to successor node of the graph); each is associated with a particular conditional distribution of the successor, given the predecessor. If a
predecessor variable is 0 for a given individual, for example, because of mortality, then its successor variables are also 0. A, Example 1: Uroleucon
rudbeckiae, an aphid. An individual’s fitness comprises its survival to each age, Si, modeled as (conditionally) Bernoulli and the number of young
it produces at each age, Bi, modeled as (conditionally) zero-truncated Poisson. B, Example 2: Echinacea angustifolia, a perennial plant. Observations
include juvenile survival at three times up to transplanting into the field (ldsi) and subsequent survival through 5 years (ld0i), as well as the plant’s
number of rosettes (r0i) in 3 years. The survival variables are modeled as (conditionally) Bernoulli (0 indicates mortality, and 1 indicates survival),
and r0i is (conditionally) zero-truncated Poisson (i.e., a Poisson random variable conditioned on being greater than 0). C, D, Example 3: Chamaecrista
fasciculata, an annual plant. Success or failure of reproduction (here, including survival to reproduction) is given by reprod, modeled as Bernoulli
(0 indicates no seeds, and 1 indicates production of seeds). Given that a plant reproduces, the components of its fecundity are its number of fruits
(fruit) and in C, also the number of seeds in a sample of three fruits (seed). Each is modeled as negative binomial, two truncated and zero truncated,
respectively.

distributions suitable for each, explicitly taking into ac-
count the dependence of each stage on previous stages.
We represent the life history and, in particular, the de-
pendence of one life-history component on another, with
graphical models, as in figure 1, with arrows pointing from
a predecessor variable to its successor.

The theory underlying the aster approach requires mod-
eling the conditional distribution of each variable, given
its predecessor variable, as an exponential family of dis-
tributions (Barndorff-Nielsen 1978; Lehmann and Casella
1998; Geyer et al. 2007), with the predecessor variable
providing the sample size for its successor. This require-
ment retains considerable flexibility because many well-
known distributions are exponential families, including
Bernoulli, Poisson, geometric, normal, and negative bi-
nomial (Mood et al. 1974, pp. 87–103).

A predecessor variable n must be nonnegative integer
valued. If , then the successor is the sum of n in-n 1 0
dependent and identically distributed variables having the
named distribution. If , then the successor is 0. Thisn p 0
accommodates much of the dependence in life-history
data. In a graph like that in figure 1A, where each of the
variables Sx models survival (0 or 1, with 1 indicating

alive), a dead individual stays dead and does not
reproduce.

The aster approach is generally suited to analyzing com-
plicated life histories (e.g., fig. 1). Some widely used meth-
ods are special cases of aster models. The simplest possible
aster models have graphs with only one arrow per indi-
vidual ( ). If X is normal, this is a linear model (LM),1 r X
as in multiple regression or ANOVA. If X is Bernoulli or
Poisson, this is a generalized linear model (GLM), as in
logistic or Poisson regression (McCullagh and Nelder
1989). The next simplest models have graphs ,1 r X r Y
with X Bernoulli and Y zero-truncated Poisson (like fig.
1D); here the marginal distribution of Y is zero-inflated
Poisson (Martin et al. 2005). An aster model with graph

, with all Xi Bernoulli, corresponds…1 r X r X r r X1 2 n

to survival analysis. We note that, in all these cases, mul-
tiple parameterizations arise. The parameters that are di-
rectly interpretable, the mean value parameters, are dif-
ferent from those that are modeled linearly, the canonical
parameters. In Bernoulli (logistic) regression, the mean
value parameter is the proportion , whereas thep p E(X)
canonical parameter is v p logit(p) p log (p) � log (1 �

. In Poisson regression, the mean value parameter isp)
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, whereas the canonical parameter ism p E(X) v p
.log (m)

In all aster models, a transition between life-history
stages, that is, an arrow in the graph, corresponds to the
conditional distribution of one fitness component, which
contributes one term to the log likelihood

l(v) p (x v � x c (v )), (1)� j j p(j) j j
j

where xj is the canonical statistic, vj is the canonical pa-
rameter for the jth conditional distribution, and xp(j) is the
predecessor of xj. Each term of equation (1) has expo-
nential family form, but the sum does not. It can, however,
be put in exponential family form,

l(J) p x J � c(J), (2)� j j[ ]
j

by a change of parameter. Either equation (1) or equation
(2) is a log likelihood for the full model, with one param-
eter per variable, and the canonical statistic vector x is the
same for both, but the linearly modeled canonical param-
eters, and , differ. To distinguish the two canonicalv J

parameter vectors, we call conditional andv J

unconditional.
Unconditional aster models are submodels of the full

model (2) determined by the change of parameter J p
. The submodel is also an exponential family with logMb

likelihood

l(b) p y b � d(b), (3)� k k[ ]
k

where . The matrix M is called the model orTy p M x
design matrix. For this submodel, y is the canonical sta-
tistic, and is the canonical parameter whose maximumb

likelihood estimate (MLE) solves the equations

y p E (Y ). (4)k b k

Both y and the MLE of are minimal sufficient (containb

all of the information in the data about the parameter).
The expectation of the canonical statistic is the meanE (Y)b

value parameter. The relationship between the canonical
parameter and the mean value parameter is monotone,

; increasing bk while holding the rest fixed�E (Y )/�b 1 0b k k

increases the corresponding mean value parameter. More-
over, hypothesis tests and confidence intervals concerning
the corresponding canonical parameters directly evaluate
the statistical significance of these canonical statistics. Un-

conditional aster models share all of these properties with
GLM.

In contrast, none of these properties is shared with con-
ditional aster models; that is, when the conditional ca-
nonical parameter is modeled linearly, , where Tv p Tg

is a model matrix. The resulting submodel itself is not an
exponential family. The MLE is the value of that solvesg

the equation

y p E (X d x )t , (5)�k g j p(j) jk
j

where tjk is the component of T but has no simple prop-
erties. The MLE is not a sufficient statistic and has no
monotone relationship with expectations.

Either kind of aster model (conditional or uncondi-
tional) is a model for the joint distribution of all the data.
Either may be useful for some particular data, but we
recommend unconditional models because they yield sim-
ple interpretations via unconditional mean values (of the
canonical statistics), like those familiar from LM and GLM.
In particular, they directly test hypotheses about lifetime
fitness when it is a canonical statistic. The unconditional
parameterization is not readily understood intuitively be-
cause terms in that nominally refer to a single com-b

ponent of fitness (affecting its Ji only) directly influence
the unconditional expectation of overall fitness by affecting
not only the distribution of the specified component but
also the distributions of earlier expressed components of
fitness. Consequently, it is difficult (but not impossible;
see our example 2) to see the role played by a single com-
ponent of fitness. This is an unavoidable consequence of
addressing overall fitness.

We demonstrate the value and versatility of the aster
approach with three examples. In the first, we illustrate
inference of population growth rate. We consider a small
data set that Lenski and Service (1982) used to demon-
strate their nonparametric method for inferring popula-
tion growth rate from a set of individual life histories of
the aphid Uroleucon rudbeckiae. In this case, we illustrate
the use of a conditional model, though either type of model
could be used. In our second example, we apply the aster
approach to compare mean fitness among groups to quan-
tify effects of inbreeding on Echinacea angustifolia, a long-
lived plant, from observations over 5 years. Finally, we
reanalyze data of Etterson (2004) to estimate the fitness
surface for phenotypic traits for the annual legume Cham-
aecrista fasciculata. We show how much simpler aster anal-
ysis is when fitness is a canonical statistic and also how
to proceed when, due to the experimental design, it is not.
A contributed package “aster” for the R statistical language
(R Development Core Team 2006) performs all calcula-
tions related to aster models, contains the data sets for our
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examples, and is freely available (http://www.r-project
.org). Two technical reports (Shaw et al. 2007a, 2007b)
provide reproducible computations of all the analyses for
this article.

Example 1: Estimation of Population Growth Rate l

Lenski and Service (1982) recognized the need for a valid
statistical approach for inferring rates of population
growth l from life-history records via the stable-age equa-
tion (Fisher 1930). They emphasized the importance of
accounting for individual variation in survivorship and
fecundity and of treating the full life-history record of an
individual as the unit of observation. Lenski and Service
(1982) presented a nonparametric approach that resamples
complete records of individual life histories via the jack-
knife to obtain estimates and sampling variances of l. They
illustrated the approach with a small data set sampled from
the aphid Uroleucon rudbeckiae. The survival and fecundity
in each of 14 age intervals were recorded for 18 individuals
(see fig. 1A), and these data served as the basis for esti-
mating l and its sampling variance.

Applying the aster approach to these data, we modeled
the binomial parameter governing survival probability,

, as a quadratic function of age x. Survivorshiplogit(j )x

declined significantly with age ( ), with significantP p .001
curvature ( ). Expected fecundities bx, modeledP p .028
according to a Poisson distribution, were estimated for
each age class x, given survival to that age.

Interest focuses primarily on estimating l but also on
its sampling variance, as noted by Alvarez-Buylla and Slat-
kin (1994), because of its importance in assessing whether
a population is growing or declining. The stable-age equa-
tion implicitly defines l as a nonlinear function of the
unconditional expectations , which are estimatedm p j bx x x

by aster models; from these, l is determined by solving
the stable-age equation, and standard errors are obtained
using the delta method (Shaw et al. [2007b] give details).
From these data, we estimated , with a standardl p 1.677
error of 0.056. Our estimate agrees closely with one of
Lenski and Service (1982; 1.688), and 95% confidence in-
tervals are also similar (aster: 1.57, 1.79; jackknife: 1.52,
1.85). We emphasize, however, that the aster approach can
be used in more complicated situations where resampling
methods would not be valid.

Example 2: Comparison of Fitness among Groups

In this example, we illustrate use of aster models to com-
pare mean fitnesses of groups. Specifically, we investigate
how relatedness of parents affects progeny fitness in a
perennial plant Echinacea angustifolia (narrow-leaved pur-
ple coneflower), a widespread species in the North Amer-

ican prairie and Great Plains. Following the conversion of
land to agriculture that began about a century ago, the
formerly extensive populations now persist in typically
small patches of remnant prairie. The plant is self-incom-
patible, and Wagenius (2000) detected no deviation from
random mating within a large population in western Min-
nesota. In the context of fragmented habitat, matings be-
tween close relatives in the same remnant, and perhaps
also long-distance matings, may be more common.

To evaluate effects of different mating regimes on prog-
eny fitness, formal crosses were made between pairs of
plants (a) from different remnants, (b) chosen at random
from the same remnant, and (c) known to share maternal
parent. The parental plants had been growing for 3–4 years
in randomized arrays in an experimental field. From the
resulting seeds, 557 seedlings germinated. After 3 months
in a growth chamber, the surviving 508 individuals were
transplanted back into the same experimental field. Sur-
vival of each seedling was assessed in the growth chamber
on three dates and, after transplanting into the field, an-
nually from 2001 to 2005. The number of rosettes (basal
leaf clusters, 1–7) per plant was also counted annually from
2003 to 2005. Here, we consider individual size as a sur-
rogate component of fitness during the juvenile period;
the typically strong positive relationship between size and
eventual fecundity justifies this here, as elsewhere.

Mortality of many plants (∼30%) resulted in a distri-
bution of rosette count in 2005 having many zeros. We
modeled survival through each of eight observation in-
tervals as Bernoulli, conditional on surviving through the
preceding stage; we modeled rosette count in each of three
field seasons, given survival to that season, as zero-trun-
cated Poisson (fig. 1B). To account for spatial and temporal
heterogeneity, we also included in the models as fixed
effects (a) year of crossing (1999 or 2000), (b) planting
tray during the period in the growth chamber, and (c)
spatial location (row and position within row) in the field.

Our primary focus was on evaluating the effects of mat-
ing treatments on overall progeny fitness, taken as expected
rosette count in 2005 for a seed obtained in 2001. In
addition, we investigated the timing and duration of the
effects of mating treatment on fitness. These effects could
be slight during early stages but strong during later stages;
alternatively, effects of mating treatment at the early stages
may largely account for differences in fitness. These sce-
narios differ in their implications concerning the inbreed-
ing load expected in standing populations (Husband and
Schemske 1996). To evaluate these scenarios, we developed
four aster models, named “chamber,” “field,” “sub,” and
“super.” Each was a joint aster analysis of all 11 fitness
components (survival over eight intervals, rosette count
at three times). The field model includes explicit mating
treatment effects only on the final rosette count (fig. 1B,
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Figure 2: Predicted values and 95% confidence intervals for the unconditional mean value parameter for survival up to transplanting (A; lds3) and
rosette count in the last year recorded (B; r05; i.e., overall fitness over the study period) for a typical individual for each cross type. The experimentally
imposed crossing treatments are between remnant populations (Br), within remnant populations (Wr), and inbred within remnants (Wi; i.e., between
sibs). Lines indicate the different models: model; model; model; model.dotted p sub dashed p chamber solid p field dot-dashed p super

r05), but because we used unconditional aster models,
these effects propagate back to earlier stages as well. The
chamber model includes explicit mating treatment effects
only on the final survival before transplanting (fig. 1B,
lds3), but again, these effects propagate back through the
two preceding bouts of survival. The remaining two mod-
els are used to test these scenarios of timing of effects; the
sub model is the greatest common submodel of the cham-
ber and field models, and the super model is their least
common supermodel (i.e., the sub model includes no ef-
fects of mating treatment on any aspect of fitness, whereas
the super model includes separate effects of mating treat-
ment on survival up to transplanting and final rosette
count).

The aster analysis revealed clear differences among mat-
ing treatments in mean overall fitness (field model vs. sub
model, ). The fitness disadvantage of prog-�5P p 1.1 # 10
eny resulting from sib mating relative to the other treat-
ments is a 35%–42% reduction in rosette count (fig. 2B).
Because of the propagation of effects back to earlier stages,
effects of mating treatment on variable r05 in the field
model directly account for differences in fitness at all ear-
lier stages. Thus, this analysis suffices for inferring the
overall effects of mating treatment on fitness.

Our further investigation of the timing and duration of

these effects detects differences among mating treatments
in survival up to transplanting (sub model vs. chamber
model, ). Comparison of the chamber and fieldP p .012
models with the super model shows that the field model
accounts well for differences in overall fitness; the super
model fits no better than the field model ( ) butP p .34
does fit better than the chamber model ( ).�4P p 3.1 # 10
The terms in the super model for the effects of mating
treatment on survival up to transplanting are not needed
to fit the data because the backpropagation of effects sub-
sumes the effects of mating treatment in the growth cham-
ber. This does not mean that there are no effects of mating
treatment on fitness before transplanting. Comparison of
the sub and chamber models confirms they exist, and fig-
ure 2 clearly shows them. The early disadvantage of prog-
eny resulting from sib mating relative to the other treat-
ments is clear in the 7%–10% reduced survival up to the
time of transplanting, but the overall fitness disadvantage
of inbreds is considerably greater (fig. 2).

Example 3: Phenotypic Selection Analysis

Lande and Arnold (1983) proposed multiple linear and
quadratic regression of fitness on a set of quantitative traits
as a method for quantifying natural selection directly on
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each trait. In practice, these analyses have generally em-
ployed components of fitness, rather than overall fitness,
as the response variable (e.g., Lande and Arnold 1983;
Kingsolver et al. 2001). As a result, the estimated selection
gradients (partial regression coefficients) reflect selection
on a trait through a single episode of selection rather than
selection over multiple episodes or over the life span, as
needed for evolutionary prediction. Focusing on this lim-
itation, Arnold and Wade (1984b) considered partitioning
the overall selection gradient into parts attributable to dis-
tinct episodes of selection, and Arnold and Wade (1984a)
illustrated the approach with examples. Wade and Kalisz
(1989) modified this approach to allow for change in phe-
notypic variance among selection episodes. Whereas these
developments were intended to accommodate the multiple
stages of selection, they do not directly account for the
dependence of later components of fitness on ones ex-
pressed earlier because they use multiple separate analyses.

Mitchell-Olds and Shaw (1987), among others, noted
that statistical testing of selection gradients is often com-
promised by failure of the analysis to satisfy the assump-
tion of normality of the fitness measure, given the pre-
dictors. This concern applies to McGraw and Caswell’s
(1996) approach, which integrates observations from the
full life history. To address this problem for the case of
dichotomous fitness outcomes, such as survival, Janzen
and Stern (1998) recommended the use of logistic re-
gression for testing selection on traits and showed how
the resulting estimates could be transformed to obtain
selection gradients. To allow for shapes of the fitness func-
tion more general than quadratic, Schluter (1988) and
Schluter and Nychka (1994) suggested estimation of the
relationship between fitness and traits as a cubic spline,
but this also requires a parametric error distribution,
whether normal, binomial, or Poisson.

Unconditional aster analysis estimates the relationship
between overall fitness and traits directly in a single, uni-
fied analysis. We illustrate this use of aster models with a
reanalysis of Etterson’s (2004) study of phenotypic selec-
tion on three traits in three populations of the annual
legume Chamaecrista fasciculata reciprocally transplanted
into three sites. The three traits, measured in 8–9-week-
old plants, are leaf number (LN; log transformed), leaf
thickness (measured as specific leaf area, SLA, the ratio of
a leaf’s area to its dry weight; log transformed), and re-
productive stage (RS; scored in six categories, with in-
creasing values denoting greater reproductive advance-
ment). Here, for simplicity, we consider a subset of the
data for the three populations grown in the Minnesota
site, comprising records of 2,235 individuals.

In this experiment, individuals were planted as seed-
lings, and fitness was assessed as (1) survival to flowering;
(2) flowering, given survival; (3) number of fruits, given

flowering; and (4) number of seeds in a sample of three
fruits, also given flowering. For simplicity, we collapsed
survival, flowering, and fruiting to a single component of
fitness, modeled as Bernoulli (“reprod”). Plants that pro-
duced seeds have , and those that did not,reprod p 1
regardless of the reason, have . Consequently,reprod p 0
overall fitness was modeled jointly as reproduction, num-
ber of fruits, and number of seeds in three fruits (fig. 1C,
reprod, fruit, seed). Preliminary analyses assessed the fit of
truncated Poisson and truncated negative binomial dis-
tributions for both fecundity components, and the latter
distribution was adopted for fruit and seed. In addition
to the traits of interest, the model included spatial blocks
as fixed effects.

To illustrate phenotypic selection analysis most straight-
forwardly, we begin by analyzing two of the fitness com-
ponents, reprod and fruit (fig. 1D), in relation to the traits
LN, SLA, and RS. We use an unconditional aster model,
in which overall fitness is the number of fruits produced
per individual seedling. This model detected strong de-
pendence of fitness on all three traits such that selection
is toward more leaves ( ), thinner leaves (�6P ! 10 P p

), and earlier reproductive stage ( ).�6.006 P ! 10
We detected highly significant negative curvature for LN

and SLA, suggestive of stabilizing selection ( ); be-�6P ! 10
cause RS is categorical, we did not consider models qua-
dratic in it. The plot of the fitness function together with
the observed phenotypes (fig. 3, solid contours) reveals that
the fitness optimum lies very near the edge of the distri-
bution of leaf number. Thus, for this trait, despite signif-
icant negative curvature, selection against both extremes
of the standing variation in the trait (i.e., stabilizing se-
lection) is not observed. The aster analysis fits the data
well, as reflected by the scatterplots of Pearson residuals
that show very little trend and only a few extreme outliers
for fruit number (fig. 4A). The assumptions of the aster
model appear satisfied, and the estimated fitness surface
is biologically plausible and fits the data well. These points
reinforce our confidence in the aster model P values and
estimated fitness surface.

We compare the result from aster modeling with that
obtained from the approach of Lande and Arnold (1983),
which has become standard, ordinary least squares re-
gression (OLS) of fruit count on traits. The bivariate fitness
function inferred via OLS has positive curvature for LN,
suggesting disruptive selection. This contrasts with the
negative curvature obtained by aster models (fig. 3). The
fitness surface fitted by aster models (fig. 3, solid contours)
has a peak on the right side (large LN) and is fairly flat
on the left (small LN). The quadratic approximation via
OLS (fig. 3, dotted contours) cannot have flat regions; its
best approximation is a saddle. Further, a quadratic func-
tion cannot have both a saddle and a peak; thus, OLS
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Figure 3: Scatterplot of specific leaf area (SLA; log transformed) versus leaf number (LN; log transformed), with contours of the fitness function
(expected fruit count) estimated by aster models (solid contours) and those of the quadratic approximation estimated by ordinary least squares
(dotted contours). Compare with figure A2.

misses the peak. Another problematic feature of the qua-
dratic approximation is that it becomes negative. Thus,
the main problem with OLS is the bias from the quadratic
approximation of a highly nonquadratic surface. The aster
model is also quadratic, but it is quadratic on the canonical
parameter scale. The corresponding fitness estimates,
which are mean value parameters, are necessarily positive.
Transformation of LN and SLA via Box-Cox (Box and Cox
1964) to satisfy the assumption of normality (Lande and
Arnold 1983) hardly affects this comparison of the shapes
of the fitness functions inferred via the aster approach and
OLS (fig. A1).

Nominal P values produced by OLS regression indicate
that the positive curvature of the quadratic approximation
in the LN direction is statistically significant ( ),�6P ! 10
but the homoscedasticity and normality assumptions re-
quired for OLS regression to give meaningful P values are
seriously violated (fig. 4B). Such violations of assumptions
for an OLS regression analysis are expected, given that 3%
of plants have fitness of 0 and that the distributions of
numbers of fruits per plant is heavily skewed. These vi-
olations make the nominal P value from the OLS invalid.

We extend the above phenotypic selection analysis to

include the additional fitness component seed (fig. 1C).
In this case, fitness is no longer a canonical statistic; that
is, there is no linear combination of the variables that
corresponds to fitness. The two fecundity components
fruit and seed are modeled as separately dependent on
reprod. This analysis detected dependence of fruit on LN
( ) and SLA ( ) and of seed on LN (�6P ! 10 P p .046 P !

) and RS ( ). It also found significant curvature�6 �610 P ! 10
in the relationship between fruit and both LN ( )�6P ! 10
and SLA ( ) and between seed and LN (P p .035 P p

). Here again, we did not attempt to fit quadratic.0008
dependence on RS. Use of an unconditional aster model
in these analyses yields an estimate of the relationship
between each fitness component and each trait that takes
into account prereproductive mortality.

The above analysis does not, however, satisfy the goal
of evaluating the relationship between overall fitness and
the traits; because fitness is not a canonical statistic, its
expectation is not produced directly by aster methods.
However, it can be approximated by averaging simulations.
In detail, we use the estimated parameter values to simulate
fitness records for individuals representing each trait com-
bination, from these calculate , and averagefruit # seed/3
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Figure 4: Residual plots from phenotypic selection analyses for Cham-
aecrista fasciculata. A, Pearson residuals for fruit count conditional on
reproduction plotted against values fitted from the aster model quadratic
in leaf number and specific leaf area and also containing reproductive
stage and spatial block. B, Similar to A, except standardized residuals
fitted by ordinary least squares (same response and predictors as in A).

these over the simulations to approximate the expected
fitness for each trait combination. The shape of the re-
sulting fitness surface (fig. A2, solid contours) resembles
that estimated using only fruit as the fecundity measure,
though it provides stronger evidence of true stabilizing
selection on LN. The best quadratic approximation fitted
by OLS has a saddle in this case too.

There are two alternative data structures that include
seed counts for which a simple aster analysis, without sim-
ulation, would analyze fitness directly. The graph 1 r

would be appropriate if all seedsreprod r fruit r seed
(from all fruits) had been counted for each individual.
Then, in an unconditional aster model, fitness would be
seed, a canonical statistic, and the analysis would auto-
matically take the contribution of reprod and fruit to fit-
ness into account. However, it is often impractical, as in
this case, to count all seeds. Subsampling is a common
practice in studies of animals (e.g., Howard 1979) and

plants. An alternative to exhaustive enumeration that fa-
cilitates aster analysis is to obtain for each individual the
seed count for a random number of fruits, corresponding
to the graph , where1 r reprod r fruit r samp r seed
samp is the number of fruits sampled for the individual,
a binomial(fruit, p) random variable, where p is fixed and
known (the fraction of fruit sampled). In this sampling
scheme, fitness would be proportional to seed, a canonical
statistic, and aster analysis would again be simple.

For our actual data, it might seem natural to use the
product of fruit count and number of seeds per fruit as
one variable in an aster analysis, so the graph is 1 r

, but this would not be valid be-reprod r fruit # seed/3
cause this product is not distributed according to an ex-
ponential family. Alternatively, it might seem natural to
use the preceding graph with samp replaced by the con-
stant 3, but this is also invalid because the constant 3 is
not distributed according to an exponential family. Thus,
the structure of this aster model precluded inference of
overall selection via a simple aster analysis. Nevertheless,
simulation yielded the expected fitness surface.

We have illustrated how aster models can conduct phe-
notypic selection analysis on complete life-history records
to yield biologically interpretable estimates of the fitness
surface. We emphasize that even for an annual, for which
life-history analysis is commonly considered relatively
straightforward, assumptions of aster analysis are more
closely satisfied than are those of OLS. We have also shown
that, even when available data preclude modeling total
reproductive output as a canonical statistic, aster estimates
the parameters of a fitness model that can be used (with
simulation, if necessary) to produce a statistically sound
phenotypic selection analysis.

Discussion

Both numerical and genetic dynamics of a population de-
pend fundamentally on individuals’ contributions of off-
spring, their fitness. Extensive theoretical work (e.g., Fisher
1930; Charlesworth 1980) has formalized and extended
this insight of Darwin, yet statistical challenges have con-
tinued to compromise empirical evaluation of fitness. As-
ter models address these challenges and take full advantage
of available data to yield comprehensive assessments of
fitness that are as precise as possible. This not only offers
statistical power for tests of hypotheses but also promotes
quantitative comparison of fitnesses. Most important, as
a general framework for analyzing life-history data, aster
models can address questions that arise in diverse evo-
lutionary and ecological contexts. Examples presented here
illustrate the breadth of aster models’ applicability, in-
cluding estimation of population growth rate, comparison
of mean fitness among groups, and inference of phenotypic



E44 The American Naturalist

selection. Beyond analysis of life-history data, aster mod-
eling is appropriate for any set of responses in which there
are dependencies analogous to those characteristic of life
histories. In a behavioral study, for example, individual
subjects may forage in a given interval or not and, given
that they forage, may take varying numbers of prey. We
emphasize that aster models obviate the common practice
of multiple separate analyses, which cannot provide valid
statistical tests or sound estimates of sampling error. A
single aster model can encompass the real complexities
not only of multiple component responses but also of
discrete and continuous predictors, thus yielding direct
inferences about fitness and population growth.

Lifetime fitness rarely, if ever, conforms to any distri-
bution amenable to parametric statistical analysis less com-
plex than aster models, a problem that has plagued em-
pirical studies of fitness. Resampling approaches are
sometimes used, but this is not a general solution because
valid resampling schemes generally are not available for
complex data structures. Moreover, resampling methods
sacrifice statistical precision relative to parametric analysis.
As an alternative, transformations are often attempted, but
the prevalence of mortality before reproduction typically
results in fitness distributions with many individuals at 0,
so no transformation produces a well-known distribution.
Moreover, even if such a transformation could be found,
analyses of fitness on an alternative scale can mislead
(Stanton and Thiede 2005). Aster models address these
problems by directly modeling each distinct component
of fitness with a suitable parametric distribution and ac-
counting for the dependence of each fitness component
on those expressed earlier. As a consequence, it models
the sampling variation appropriately and yields results on
the biologically natural scale of expected number of in-
dividuals produced per individual. When records are avail-
able for only a portion of the life span, as in our example
2, joint analysis via an unconditional aster model provides
comparisons based on the most complete records at hand.

Studies of variation in fitness often focus on single com-
ponents of fitness likely to be conveniently distributed.
These can yield insight into the nature of fitness variation
during a particular episode of selection. However, the re-
sulting understanding of fitness and its variation is frag-
mentary and can be misleading when the relationship be-
tween components of fitness, on the one hand, and traits
or genotypes, on the other, varies over the life span (e.g.,
Prout 1971). Whereas Arnold and Wade (1984b) proposed
an approach to evaluate phenotypic selection over multiple
episodes (modified by Wade and Kalisz [1989]), this ap-
proach uses separate analyses of each episode, ignoring the
dependence structure of fitness components. Conse-
quently, the sampling variance of the resulting estimates
of selection cannot readily be determined.

Our first example illustrates use of aster models to infer
population growth rate. Lenski and Service (1982) first
noted the importance of sound statistical modeling for
population growth. Our use of aster models in this context
builds on their work by employing parametric models for
each life-history event. The resulting estimate of growth
rate is similar to that obtained by Lenski and Service’s
(1982) method using the jackknife, as are the confidence
intervals from the two approaches. The key point is that
aster analysis provides a sound parametric basis for in-
ferences about population growth, even for data structures
that are not suited to resampling.

Our second example demonstrates the use of uncon-
ditional aster models to estimate and compare mean fitness
for groups produced by different mating schemes and,
thus, differing in genetic composition. This analysis reveals
that remnant populations of Echinacea angustifolia are sub-
ject to severe inbreeding depression of at least 70% overall
when extrapolated linearly to inbreeding arising from one
generation of selfing. In a similar application of aster mod-
els, Geyer et al. (2007) have analyzed survival and annual
production of flower heads jointly for samples of these
remnant populations grown in the experimental field,
demonstrating greater than twofold range in mean fitness
among remnants ( ). In the example here, we showP ! .01
how the likelihood framework of aster models permits
straightforward tests of several hypotheses. We show that
the significant early disadvantage in size and survival of
inbred plants does not adequately account for the fitness
differences at the end of the period of observation. Rather,
inbreeding depression in growth and survival exacerbates
the fitness disparity among seedlings. Thus, in addition to
its statistically rigorous comparisons of overall fitness
among groups, aster models yield insights into the timing
of fitness effects.

Aster models readily extend to accomplish phenotypic
selection analysis, estimating the relationship between in-
dividuals’ overall demographic-genetic contribution to the
next generation and their traits. For this, the aster model
includes the traits under consideration as predictors of
cumulative fitness; inference of quadratic and correlational
selection is also straightforward. Our example 3 shows
aster models’ estimation of the fitness surface when fitness
is a linear function of the components of fitness and also
demonstrates how to obtain such an estimate even when
it is not. Van Tienderen (2000) presented a method with
a similar goal, but it does not take into account the de-
pendence relationships of the fitness components and is
subject to the usual distributional problems (e.g., Coulson
et al. 2003). Further, it cannot validly represent the sta-
tistical uncertainty of inferred parameters because it in-
volves separate analyses to estimate selection gradients for
each fitness component. In contrast, a single aster analysis
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using an unconditional model provides results that are
interpretable as comparisons of overall fitness. Aster mod-
els report asymptotic P values and confidence intervals,
and the aster software also easily applies the parametric
bootstrap, which does not require the assumption of as-
ymptotic normality of MLE.

The centrality of fitness to many evolutionary and eco-
logical questions demands a statistical approach that rig-
orously models the inevitable, complex dependencies of
life-history data. Our examples provide only a glimpse of
the range of possible uses of aster models. Conceivably,
all the issues in all our examples and more could arise in
a single analysis, as could more extensive dependence. The
aster approach addresses these challenges. Its versatility
suits it to answer the full breadth of questions that life-
history data can address. Aster models can play a key role
linking ecological and evolutionary study of populations.
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APPENDIX

Supplementary Analyses for Example 3

We carried out further analyses for example 3 and present here the resulting estimates of fitness surfaces. In one case,
we transformed the phenotypic variables (specific leaf area and leaf number) via Box-Cox transformation (rather than
log transformation) to satisfy the assumption of normality (fig. A1, drawn from Shaw et al. 2007c). In the second
case, fitness comprised the number of fruits times the average number of seeds for three fruits rather than number
of fruits only (see text; fig. A2). Both figures can be compared with figure 3.

Figure A1: Scatterplot of specific leaf area (SLA) versus leaf number (LN; both Box-Cox transformed), with contours of the fitness function estimated



E46 The American Naturalist

by aster models (solid contours) and those of the quadratic approximation estimated by ordinary least squares (dotted contours). Fitness is number
of fruits. Compare with figure 3.

Figure A2: Scatterplot of specific leaf area (SLA) versus leaf number (LN; both log transformed), with contours of the fitness function estimated
by aster models (solid contours) and those of the quadratic approximation estimated by ordinary least squares (dotted contours). Fitness is number
of fruits times average number of seeds for three fruits. Compare with figure 3.
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