
Calculating Burn-Dependant Reproductive Success in Andropogon gerardii

Vo Dominguez and Rebecca Lerdau, Winter 2023

Andropogon gerardii- Big Bluestem

- Quintessential Prairie Grass
 - Dominant species
 - Densely populated
 - \circ Wide range
- Wind Pollinated

Clockwise: BONAP North American Plant Atlas, Steve Wilson, Paul Rothrock

Fire Response

It increases prairie biomass

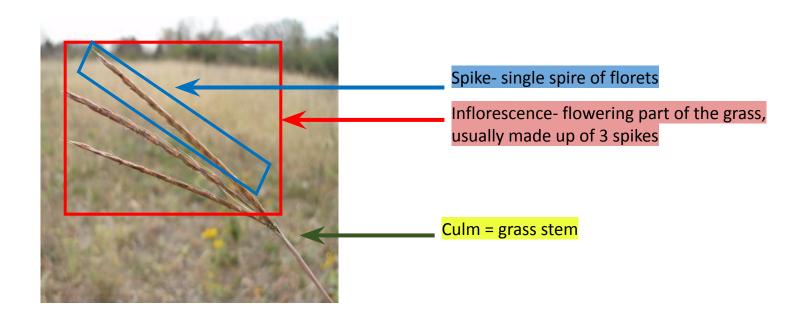
Fire tends to increase flowering

Why do prairie plants flower more after a fire?

We Don't Know if Fire Leads to More Reproductive Success

- *A. gerardii* is **self incompatible**, so **more flowers does not mean more seeds** unless they are successfully pollinated.
- We predicted that andropogon would have a **greater seed set in burned than unburned plots**
 - o Density
 - Synchrony

Therefore, we needed to calculate seed set...


Wait... How are we supposed to do that?

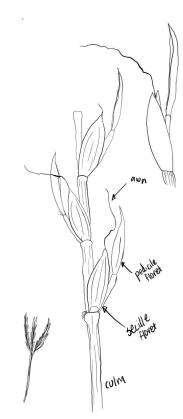
We calculate seed set all the time...

Seed set = seeds produced / total fruits

- We've calculated seed set for Echinacea in this lab
- *A. gerardii* seed set is typically found by dissecting individual florets
- But this becomes challenging when looking at seed set for large amounts of *A. gerardii*

A. gerardii Morphology

Trouble With Seed Set


Spikes are made up of pairs of spikelets Usually, only one of the spikelets in a pair has the ability to produce a seed

Sessile spikelet- perfect floret

Pedicellate spikeletstaminate floret

Awn

To calculate Andropogon seed set, you need to know how many sessile florets it has

Wikimedia Commons

How can we find total seed production without dissecting every floret?

Is there a relationship between inflorescence mass and total awns?

Andro-protocol-ogon

1. Cleaning

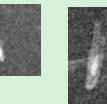
2. Weighing

3. X-raying

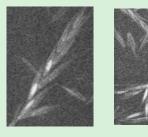
4. Classifying seeds

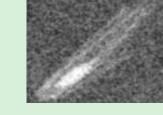
5. Counting awns

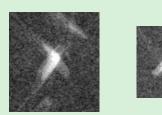
7. Data analysis

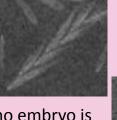


6. Weighing seeds

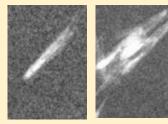



Present


one speck inside of one seed case, clearly defined

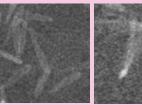

florets are **distinct** and contain clear embryos

Two embryos overlap, but the bright spots extend beyond the overlapping section.


Absent

no embryo is present, casing may be visible

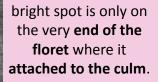
Unclear



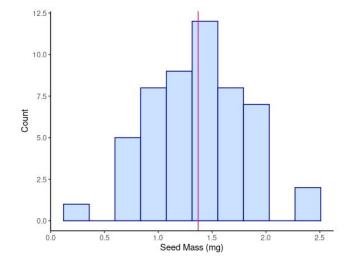
bright spot but unable to distinguish if

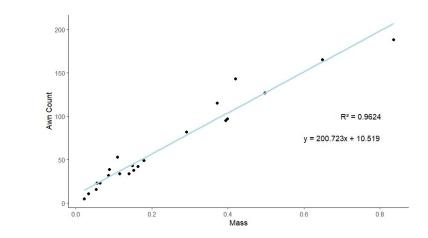
embryo is present

speck without a floret case



the only cause

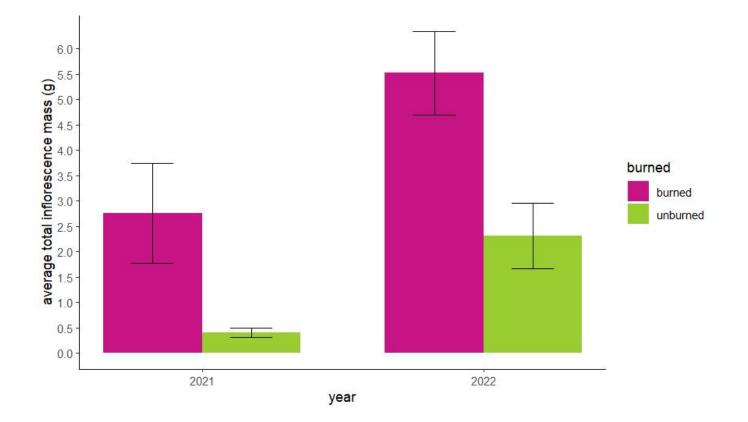

for the bright


Results: New Method for Calculating Seed Set

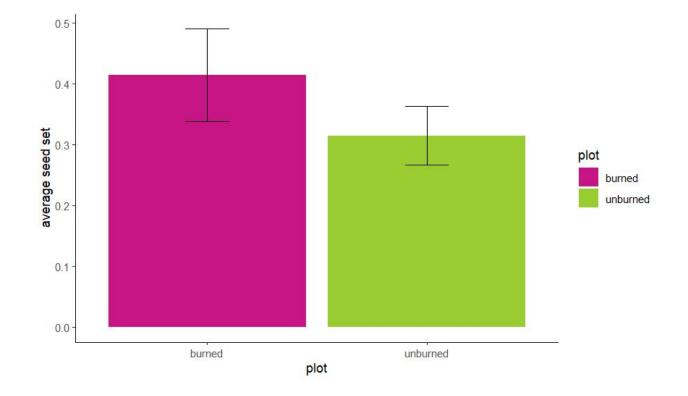
Mean seed mass calculated to subtract


Mean = 1.369

Linear relationship between Awn Count and Inflorescence Mass


Now we can use this to see how burn affects reproductive success.

Pilot Study Design



Two plots in a prairie remnant in western MN.

Fire Increases Reproductive Effort

Seed set in burned vs Unburned Plots

p = 0.1842

Conclusions

- We found a **viable method for calculating IA. gerardii seed set** without dissecting individual florets!
- We could not reject our null hypothesis comparing seed set in burned and unburned plots
- What Could this mean?
 - Methods: we did not follow our own best practices for classification
 - **Experimental Design**: The Burned and Unburned plots were really close to each other.
 - **Single Year Study:** 2022 was a high flowering year, if the reason for increased reproductive effort and success after fire is density, there might be less of a difference than in average years
 - Anova tests on reproductive effort showed that there was significant effort difference year to year
 - **Hypothesis**: wind pollination or dominance might nullify the need for post burn synchrony and density to increase reproductive success

Future Directions

- Reclassify 2022 pilot study data
 - Median of 3 counts
- Apply our methods to samples from the same plot in **different years** *A. gerardii* samples to see if there is a significant difference in different years
- Apply our methods to samples from **multiple prairie remnants** to see if remnant size, population density, and other factors influence response to burning

 $\uparrow Support$ and supervision provided by \uparrow

R Programming

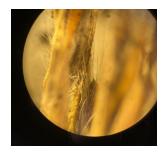
 \uparrow Stress provided by \uparrow

Lab provided by \rightarrow

CHICAGO BOTANIC GARDEN

 $\uparrow funding provided by \uparrow$

Thank you!


 \leftarrow Students and supervisors provided by \uparrow

 \uparrow Friendship provided by \uparrow

Questions?

Have an awn-some day!