Hemiparasitic plants are associated with higher quality prairies, and many hypothesize that they are fundamental in generating this high-quality prairie potentially by impeding the growth of dominant grasses, allowing non-dominant forb species to establish. Additionally, if this is true, there are likely different effects associated with the abundance of hemiparasites. Therefore, we experimentally introduced Pedicularis canadensis to another restoration plot, experimental plot 10; however, this time we introduced P. canadensis at different densities around 8 different focal species. We measure the size and reproductive effort of these 8 focal species around each of our 66 hemiparasitic plant planting locations.
In 2023, we replanted 32 Pedicularis canadensis that hadn’t been seen since they were initially planted in experimental plot 10. Additionally, we took our annual measurements of our 8 focal species’ size and reproductive effort.
Start year: 2019
Location: experimental plot 10
Overlaps with: parasitic plants addition experiment in p01
Data collected: size and reproductive effort of 8 focal species
Samples or specimens collected: NA
Products: This work is part of Drake’s Ph.D research. He will be wrapping up this year, so stay tuned!
In summers 2018 and 2019, Amy mapped and collected leaf tissue from all individuals in the study areas and harvested heads from a subset of Echinacea individuals at populations in the NW corner of the Echinacea Project study area (populations: ALF, EELR, KJ, NWLF, GC, SGC, NGC, KJ, NNWLF) to map pollen movement (see Reproductive Fitness in Remnants). Amy analyzed patterns of gene flow, by assessing how individuals’ location and timing of flowering influence their reproductive success and distance of pollen movement. The now four-year-old seedlings are planted in p10.
There was no fieldwork conducted this summer but, in exciting news, Amy used the seed set data from the gene flow in remnants experiment in her dissertation chapter, “Variation in reproductive fitness among individual plants depends on the spatial proximity of prospective mates and the timing of their reproduction”. Amy defended her dissertation in May, and this chapter is currently in preparation for publication!
Start year: 2018
Location: Roadsides, railroad rights of way, and nature preserves in and around Solem Township, MN
In summers 2018 and 2019, I mapped and collected leaf tissue from all individuals in the study areas and harvested seedheads from a subset of Echinacea individuals at populations in the NW corner of the study area (populations: ALF, EELR, KJ, NWLF, GC, SGC, NGC, KJ, NNWLF) to map pollen movement (see Reproductive Fitness in Remnants). To analyze patterns of gene flow, I will assess how individuals’ location and timing of flowering influence their reproductive success and distance of pollen movement. I am currently wrapping up genotyping the DNA from the leaf tissue samples and a subset of the seeds I collected. This summer, the team measured the 3-year-old seedlings from the gene flow study that are planted in exPt10. I did not do additional field work for this project this year.
Start year: 2018
Location: Roadsides, railroad rights of way, and nature preserves in and around Solem Township, MN
Data collected: exPt10 measure data is in the cgdata repo.
Products: I presented a poster based on the locations and flowering phenology of individuals from summer 2018 at the International Pollinator Conference in Davis, CA this summer. The poster is linked here: https://echinaceaproject.org/international-pollinator-conference/.
In 2019, Team Echinacea transplanted over 1400 Echinacea angustifolia plants from three local prairies to 12 plots at the West Central Area (WCA) High School, also known as exPt10. Since then, the West Central Area High School instructors and students have collaborated with members of Team Echinacea to gather data and plan the treatments of the plots, anything from burning to assessing plant fitness. In the fall, WCA students do an individual investigation using the Echinacea plots and then create a poster showing the process and conclusion of their investigation.
Here’s one of the 12 Echinacea plots at West Central Area High School used by Echinacea Project and WCA students to do research. Four of the plots are burned in the spring, four burned in the fall, and four are used as controls and haven’t been burned.
Having the Echinacea plots located at West Central Area School has provided many opportunities for the students to be involved in relevant research helping the Echinacea Project and doing individual projects. The plots at the school have also been used for additional research by Echinacea Project team members. Specifically, in the summer of 2021, graduate student Drake Mullett started a research project on prairie parasitic plants at exPt10 and will continue for the next few summers. Amy Waananen also continued an ongoing research project on Echinacea plants’ gene flow in exPt10. In May 2021, Team Echinacea conducted a prescribed burn at exPt10. Read more about the burn here.
An article in the local newspaper about WCA student Kennedy and Echinacea Project member Maris working together measuring the plants on one of the 12 plots located on school property.
Start year: 2018
Location: West Central Area High School’s Environmental Learning Center, Barrett, MN
Data collected: Survival data for seedlings planted in summer 2019 from Amy W’s gene flow experiment, located in the cgdata bitbucket repository along with recheck data. Data from p10 will not be going into the SQL databases
Samples collected: None this year
Products: High school posters. Contact John Van Kempen for info.
During the summer of 2019, Team Echinacea planted over 1400 E. angustifolia seedlings into 12 plots in a prairie restoration at West Central Area High School in Barrett, MN. We planted seedlings from three sources: (1) offspring from exPt1, (2) plants from my gene flow experiment, and (3) offspring from the Big Event. In summer 2021, Drake also planted plugs of other species (pictured below).
This summer, the team measured the 2-year old seedlings from my gene flow study in exPt10, as well as a few seedlings from the other plantings within the plot. The seedlings from my gene flow experiment are the offspring of open-pollinated Echinacea in 9 populations in the study area. I am assessing the paternity of these seedlings to understand contemporary pollen movement patterns within and among the remnants. In summer 2018, I mapped and collected leaf tissue from all Echinacea individuals within 800m of the study areas and harvested seedheads from a sample of these individuals (see Reproductive Fitness in Remnants). In spring 2019, I germinated and grew up a sample of the seeds that I harvested to obtain leaf tissue for genotyping.
Then, with the team’s help, I planted these seedlings in exPt10 in June 2019. I also collected seeds and leaf tissue in summer 2019 to repeat this process, but I did not germinate the achenes in the following spring because I was not able to assess seed set due to the broken x-ray machine at the CBG and then COVID-related restrictions. I hope to germinate those this spring and plant in summer 2022. I am working on extracting the DNA from the leaf tissue samples I have, which I will use to match up the genotypes of the offspring (i.e., the seeds) with their most likely father (i.e., the pollen source).
A sampler platter of seedlings, planted as part of Drake’s study of how prairie communities respond to parasitic plants.
Start year: 2018
Location: West Central Area High School’s Environmental Learning Center, Barrett, MN, Remnant prairies in Solem Township, Minnesota
To experimentally test hypotheses about how much Pedicularis canadensis, a native hemiparasite, affects the demographic rates (survival, growth, and reproduction) of other species, we planted plugs of P. canadensis in the center of a circle (with a radius of 20 cm) that contains 8 species. These eight common native prairie plant species are Echinacea angustifolia, Liatris ligulistylis, Solidago speciosa, Dalea purpurea, Pediomelum argophyllum, Sporobolus heterolepis, Koeleria macrantha, and Hesperostipa spartea. For all but Echinacea, seed was collected last year from local sources. Echinacea is the focal species of other experiments and had been planted previously. Echinacea plants served as a reference point when establishing our circles and were always directly west of P.canadensis. Circles are planted in 6 rows that were randomly selected from within the existing experimental plot 10. Rows 315, 436, 443, 643, 656, and 785 were selected. Rows contain 11 circles each, starting at 1m and going to 11m, evenly distributed 1m apart.
All circles were planted on July 29th, 2021.Plants were planted as plugs. Plugs were grown by Chicago Botanic Garden production staff before being transported to Minnesota and transplanted. Pedicularis served as the treatment and had 3 factor levels (0, 1, or 2 Pedicularis plants). Treatments were randomly assigned to circles and Pedicularis were planted in the center of each circle between August 9th and 13th, 2021. Plants in the circles were measured between August 16th and 20th, 2021.Traits measured were size and reproductive status.
North winds and dry conditions persisted Monday (May 10) giving us an opportunity to conduct prescribed burns at p10, our experimental plot at West Central Area High School. In addition to being a home to 1400 coneflower plants and Amy W.’s gene flow experiment, these plots serve as an excellent educational resources for John VanKempen, high school science teacher at WCA and long-time member of Team Echinacea. John established an experiment in which each of the twelve 8 x 10 m plots is burned during spring, fall, or not at all. This will help us understand how fire affects the survival of Echinacea seedlings. John also uses these plots as a teaching resource for high school students at WCA.
Because this burn was conducted within Barrett city limits, John needed to get special permission from the mayor and fire chief. Plus members of the volunteer fire department needed to be present. So we met up with Jenny and DJ (from Barrett’s volunteer fire department) as well as TJ and Braeden (from Hoffman’s volunteer fire department). Before burning, Stuart, John, and I chatted with members of the volunteer fire department (who included several of John’s former students!). It was a great opportunity for us to learn from community members about their experiences with prescribed burns and their knowledge of prairies. For example, DJ owns a parcel of prairie just a little outside Barrett that was passed down from his father. TJ works for the DNR’s roving burn crew based in Elbow Lake. Talking with members of the fire department also gave us an opportunity to share a little more about the science behind why we conduct prescribed burns. We also shared information about the Echinacea Project’s research in west central Minnesota investigating how fire benefits native prairie plants as well as the diversity of insects, birds, and other species that call Minnesota’s tallgrass prairie home.
Oh and of course we partnered up with these local firefighters to burn 8 prairie plots! With dry fuel conditions and pretty heavy fuel in spots, we laid down wet lines and ignited a backing fire that moved slowly against the wind. In plots with primarily warm-season grasses, we secured the downwind (south) break and ignited down the east and west flanks before lighting a head fires that went screaming across the dry big bluestem. For plots with few warm season grasses and lots of brome, we chose to use exclusively backing fire in hopes of setting back the brome and achieving a consistent black across the entire plot. This technique worked well to achieve the desired result.
The final burn unit encompassed 3 adjacent experimental plots. The northernmost of these plots had dense big bluestem. We expected the fuel in this plot and gentle slope would produce quite a head fire. The plot did not disappoint. Members of local volunteer fire departments and the Echinacea Project worked together to secure the downwind fire break and blacken the downwind third of the burn unit consisting of three adjacent experimental plots. Once we had sufficient black and the east and west flanks of the unit were secured, we ignited a spectacular head fire that burned through the dense stand of big bluestem in less than a minute.
Thanks to Jenny and DJ from the Barrett volunteer fire department as well as TJ and Braeden from the Hoffman fire department for helping us conduct prescribed burns at the high school and sharing their experiences about fire and prairies in western Minnesota!
Temperature: 52 F Relative Humidity: 24% Wind Speed: 10 mph Wind Direction: NE Ignition time: 4:50 PM End time: 6:12 PM Burn Crew: Jared, Stuart, John, Jenny, DJ, TJ, Braeden
During the summer of 2019, Team Echinacea planted over 1400 E. angustifolia seedlings into 12 plots in a prairie restoration at West Central Area High School in Barrett, MN. We planted seedlings from three sources: (1) offspring from exPt1, (2) plants from my gene flow experiment, and (3) offspring from the Big Event. To test how different fire regimes affect fitness in Echinacea, folks from West Central Area plan to apply regular fall burn treatments to four plots, regular spring burn treatments to four other plots, and the remaining four plots will not be burned. I’m not sure if they were able to perform these burns as planned in Fall 2020 given COVID restrictions this spring and fall, but John Van Kempen would be the man to ask about that. I believe they were able to do the burns in the spring.
This summer, the team measured the 1-year old seedlings from my gene flow study in exPt10, as well as a few seedlings from the other plantings within the plot. The seedlings from my gene flow experiment are the offspring of open-pollinated Echinacea in 9 populations in the study area. I am assessing the paternity of these seedlings to understand contemporary pollen movement patterns within and among the remnants. In summer 2018, I mapped and collected leaf tissue from all Echinacea individuals within 800m of the study areas and harvested seedheads from a sample of these individuals (see Reproductive Fitness in Remnants). In spring 2019, I germinated and grew up a sample of the seeds that I harvested to obtain leaf tissue for genotyping.
Then, with the team’s help, I planted these seedlings in exPt10 in June 2019. I also collected seeds and leaf tissue in summer 2019 to repeat this process, but I did not germinate the achenes in the following spring because I was not able to assess seed set due to the broken x-ray machine at the CBG and then COVID-related restrictions. I hope to germinate those this spring and plant in summer 2021. I am working on extracting the DNA from the leaf tissue samples I have, which I will use to match up the genotypes of the offspring (i.e., the seeds) with their most likely father (i.e., the pollen source).
Here are some fun facts about the seedlings we found in exPt 10:
The longest leaf we saw was 19 cm! Most were much smaller (see below).
The leafiest plant we saw had 4 leaves (though one had been munched)
Overall we found 424 seedlings alive of the 598 that we searched for, or 71%. The ones we didn’t find are probably dead, but we’ll look for them again next year to make sure we didn’t just miss them.
I’m looking forward to seeing these friends again next year.
Allie gives a thumbs after successfully finding a baby Echinacea plant in p10!
Start year: 2018
Location: West Central Area High School’s Environmental Learning Center, Barrett, MN, Remnant prairies in Solem Township, Minnesota
In the fall of 2018, the Echinacea Project scientists came to West Central Area Schools (WCA) and mapped out twelve plots to transplant E. angustifolia into the following summer. The WCA Environmental Learning Center has 35 acres of restored prairie, making it a perfect place to plant experimental plot 10. During the summer of 2019, Team Echinacea planted over 1400 E. angustifolia seedlings into the 12 subplots. Three plantings were performed: the first was a planting organized by Michael and had offspring from exPt1, the second consisted of plants from Amy W’s gene flow experiment, and the third planting had offspring from the Big Event. All plants originate from Grant or Douglas County, MN. To test how different fire regimes affect fitness in Echinacea, folks from West Central Area will apply a fall burn treatment to four plots, a spring burn treatment to four other plots, and the remaining four plots will not be burned.
The team after planting the original cohort of Echinacea in experimental plot 10. It was a long day!
During science classes with John VanKempen, WCA high school students will assess the effects of differential burning regimes on the fitness of E. angustifolia. For the first time this fall, juniors in VanKempen’s classes used data they collected on plants to answer their own scientific inquiries. Students developed hypotheses, then measured various morphological traits on surviving Echinacea in the 12 plots. The students used the data they collected to create graphs based on their data. VanKempen plans to continually integrate these Echinacea experimental plots into his classroom lessons and hopes other teachers at WCA will utilize the experimental plots for student science projects.
Start
year: 2018
Location: West Central Area High School’s Environmental Learning Center, Barrett, MN.
Data collected: Planting and survival data for seedlings planted in summer 2019. GPS points taken for plots. Planting data is available in the Echinacea Project ~Dropbox/CGData/195_plant/. Contact John VanKempen for survival data taken by his students. GPS points are available here: ~Dropbox\geospatialDataBackup2019\planting2019\nailStakeWCA.csv
Products: High School Posters. Contact John
VanKempen for info.