Categories

2024 Update: Common garden experiments

A rainbow-like cloud glows over exPt01 while the team was in MN for fall 2023 burns. A good omen for the field season that followed!

Introduction

Every year since 1996, members of Team Echinacea have recorded flowering phenology, taking measure data and harvested heads from thousands of Echinacea angustifolia plants in plots with “common garden” experimental designs. These experimental plots are located in prairie remnants, restorations, and abandoned agricultural fields that are managed as grassland habitat. Currently, the Echinacea Project has 10 established experimental plots. Some plots have multiple ongoing experiments within.

This project status report will contain updates on experimental plots 1, 2, 4, 5 and 8, as well as management updates for all plots. you can find reports for the other experimental plots on separate posts including Amy Dykstra’s plot (exPt03: interpopulation crosses and local adaptation experiment), the hybrid plots (exPt06, exPt07, exPt09), and the West Central Area common garden (exPt10)

A brief note on phenology

In the past few years, we have scaled back significantly on taking phenology records in the experimental plots. During 2023 and 2024, our primary goals with phenology were to a) map out the positions of flowering plants/heads within the plots, b) deploy twist ties to all flowering heads to ease measuring and harvesting, and c) to record the day of first flowering for all heads in plots to continue the long-term data collection in a more scaled-back fashion. As a result, we conducted only a few rounds of phenology per plot and did not capture the full range of flowering dates for every head. Phenology info is briefly reported on in each plot’s update along with the location of the data. This applies to the hybrid experimental plots as well.

exPt01:

Crew members Wyatt and Emma search can’t find positions in exPt01

Experimental plot 1 was first planted in 1996 (cleverly termed the 1996 cohort), and has been planted with nine other experiments in subsequent years, with the most recent planting being Amy Waananen’s inter-remnant crosses. It is the largest of the experimental plots, with over 10,000 planted positions; experiments in the plot include testing fitness differences between remnants (1996, 1997, 1999), quantifying effects of inbreeding (inb1inb2), and assessing quantitative genetic variation (qGen1). It also houses a number of smaller experiments, including fitness of Hesperostipa sparteaaphid addition and exclusion, and pollen addition and exclusion (these experiments have separate posts).

In 2024, we conducted phenology in this plot between July 8th and July 18th. During measure, we visited 3123 of the 10,992 positions planted and found 2728 living plants. 83 plants were classified as “flowering” in exPt01 this year, totally 96 heads. This is a significantly fewer plants than flowered in summer 2023 (560). In summer 2024, we harvested 82 total Echinacea heads in exPt01 (including many from the ever-productive 99 south garden).

ExPt01 is also the only plot to have staples marking positions where plants that have died used to be. We added 67 staples to the experimental plot this year, but only in locations that we couldn’t find staples during measure that were already supposed to be there. We didn’t have time to get to every position with a missing staple (see where we covered here: Dropbox/CGData/125_measure/measure2024/staple2024/2024addStaplesExPt01.pdf). We did not have time to re-search locations that we called plants “can’t finds” at three years in a row in 2023 and 2024. Once these locations receive their final search, hopefully in 2025, we can put staples at them as well.

2024 exPt01 plant status overview

   expNm       yearPlanted nPlanted nFound nFlowering nCantFind
 1 1996               1996      650    196         16        24
 2 1997               1997      600    128          0        20
 3 1998               1998      375     17          1         2
 4 1999               1999      888    305          0        34
 5 1999S              1999      418    250         21        18
 6 2001               2001      350     30          4         8
 7 Inbreeding         2001      557     73          4        24
 8 SPP                2001      797    117          2        16
 9 Monica 2003        2003      100      3          1         1
10 qGen               2003     4468   1328         28       212
11 INB2               2006     1470    281          6        34
12 Amy's Annex        2020      319     63          0       256

That’s a total of 10,903 individuals planted in this plot! We found evidence of 2,791 living in 2024, 25.6% of the original number planted.

A number of the experiments in exPt01 are known by multiple names/abbreviations. Here’s a quick translation guide:

  • 1996-1999 = p01 main
  • SPP = Phoenix Trial in exPt01
  • Monica 2003 = M03
  • qGen = qGen1 = quantitative genetics = big batch = bbMost
  • Amy’s annex = interremnant crosses

More details on some of the experiments within exPt01

Mmmm, I can feel the warmth of sunny p1 radiating from my computer… (photo courtesy Ian Roberts)

Amy’s annex (aka interremnant crosses)

This experiment was started in 2020 by Amy Waananen to understand how the distance between plants in space and in their timing of flowering influences the fitness of their offspring. If plants that are located close together or flower at the same time are closely related, their offspring might be more closely related and inbred, and have lower fitness than plants that are far apart and/or flower more asynchronously. Plants in this experiment resulted from interremnant hand-crossings from 9 remnants: On27, SGC, GC, NGC, EELR, KJ, NNWLF, NWLF, LF. Crossing took place in 2020 and 2021, and individuals were planted in 2020 (as seed) and 2022 (as plugs). Surviving plants were assigned cgPlaIds in 2023 and incorporated into the p1 workflow. Mortality in this experiment has been high, with 80.3% of positions searched in 2024 resulting in “can’t finds.”. We did not re-search “can’t find” positions in 2024 due to time constraints (with Amy’s approval).

inb1

The inb1 experiment investigates the relationship between inbreeding level and fitness in Echinacea angustifolia. Each plant in experiment inb1 originates from one of three cross types, depending on the relatedness of the parents: between maternal half siblings; between plants from the same remnant, but not sharing a maternal or paternal parent; and between individuals from different remnants. All individuals were planted in 2001. We continued to measure fitness and flowering phenology in these plants.

inb2

The inb2 experiment investigates the relationship between inbreeding level and fitness in Echinacea angustifolia. Each plant in experiment inb2 originates from one of three cross types, depending on the relatedness of the parents: between maternal half siblings; between plants from the same remnant, but not sharing a maternal or paternal parent; and between individuals from different remnants. All individuals were planted in 2006. We continued to measure fitness and flowering phenology in these plants. In October 2024, former team member Riley Thoen recently published a paper in the Journal of Hereditary on the conservation value of small remnants using results from this experiment.

qGen1

The qGen1 (quantitative genetics, or just qGen) experiment in p1 was designed to quantify the heritability of traits in Echinacea angustifolia. We are especially interested in Darwinian fitness. Could fitness be heritable? During the summer of 2002 we crossed plants from the 1996 & 1997 cohorts of exPt01. We harvested heads, dissected achenes, and germinated seeds over the winter. In the spring of 2003 we planted the resulting 4468 seedlings (this great number gave rise to this experiment’s nickname “big batch”).

  • Start year: 1996
  • Location: Wagenius property
  • Overlaps with: 
  • Data collected: 
    • Phenology data (dates of flowering stages)
      • data in cgData repo: ~/cgData/summer2024/exPt01Phenology
    • Measure data (status, size, etc.)
      • data in SQL database
    • Harvest data (IDs of harvested heads, missing achenes, etc)
      • detailed data in dropbox: dropbox/CGData/140_reconcile/reconcile2024/reconcileOut/2024harvestListReconciledExport.csv
      • data in SQL database
      • data in echinaceaLab package (hh.2024)
  • Samples collected:
    • 82 heads harvested
      • At cbg for processing (counted, ready to randomize)
  • Products:
    • Publications
      • Thoen, R. D., A. Southgate, G. Kiefer, R.G. Shaw, S. Wagenius, The conservation value of small population remnants: Variability in inbreeding depression and heterosis of a perennial herb, the narrow-leaved purple coneflower (Echinacea angustifolia). 2024. Journal of Heredity esae055. https://doi.org/10.1093/jhered/esae055.
      • Page, M. L., Ison, J. L., Bewley, A. L., Holsinger, K. M., Kaul, A. D., Koch, K. E., Kolis, K. M., and Wagenius, S. 2019. Pollinator effectiveness in a composite: A specialist bee pollinates more florets but does not move pollen farther than other visitors. American Journal of Botany 106: 1487–1498. PDF
      • Waananen, A., G. Kiefer, J. L. Ison, and S. Wagenius. 2018. Mating opportunity increases with synchrony of flowering among years more than synchrony within years in a nonmasting perennial. The American Naturalist 192: 379-388. PDF | Appendix | online version
      • Muller, K. and S. Wagenius. 2016. Echinacea angustifolia and its specialist ant-tended aphid: a multi-year study of manipulated and naturally-occurring aphid infestation. Ecological Entomology 41: 51-60. PDF | online version
      • Shaw, R. G., S. Wagenius and C. J. Geyer. 2015. The susceptibility of Echinacea angustifolia to a specialist aphid: eco-evolutionary perspective on genotypic variation and demographic consequences. Journal of Ecology 103: 809-818. PDF
      • Kittelson, P., S. Wagenius, R. Nielsen, S. Qazi, M. Howe, G. Kiefer, and R. G. Shaw. 2015. Leaf functional traits, herbivory, and genetic diversity in Echinacea: Implications for fragmented populations. Ecology 96: 1877–1886. PDF
      • Ison, J.L., and S. Wagenius. 2014. Both flowering time and spatial isolation affect reproduction in Echinacea angustifolia. Journal of Ecology 102: 920–929. PDF | Supplemental Material | Archived Data
      • Ison, J.L., S. Wagenius, D. Reitz., M.V. Ashley. 2014. Mating between Echinacea angustifolia (Asteraceae) individuals increases with their flowering synchrony and spatial proximity. American Journal of Botany 101: 180-189. PDF
      • Ridley CE, Hangelbroek HH, Wagenius S, Stanton-Geddes J, Shaw RG, 2011. The effect of plant inbreeding and stoichiometry on interactions with herbivores in nature: Echinacea angustifolia and its specialist aphid. PLoS ONE 6(9): e24762. http://dx.plos.org/10.1371/journal.pone.0024762
      • Wagenius, S., H. H. Hangelbroek, C. E. Ridley, and R. G. Shaw. 2010. Biparental inbreeding and interremnant mating in a perennial prairie plant: fitness consequences for progeny in their first eight years. Evolution 64: 761-771. Abstract | PDF
      • Ruth G. Shaw, Charles J. Geyer, Stuart Wagenius, Helen H. Hangelbroek, and Julie R. Etterson. 2008. Unifying life-history analyses for inference of fitness and population growth. American Naturalist 172: E35 – E47. Abstract | PDF | Supplemental Material
      • Geyer, C.J., S. Wagenius, and R.G. Shaw. 2007. Aster models for life history analysis. Biometrika 94: 415-426. PDF | Supplemental Material
    • Grad student work
      • Drake Mullett’s PhD dissertation (2025)
      • Wyatt Mosiman’s MS thesis (2024)
    • Amy Waananen’s paper “The fitness effects of outcrossing distance depend on parental flowering phenology in fragmented populations of a tallgrass prairie forb” (with co-authors Ison, Wagenius, and Shaw) was just accepted by New Phytologist–it includes data from parents in exPt01 and progeny in exPt02.
    • We may have missed some other products.

exPt02: 

AKA the heritability of flowering time experiment, exPt02 was designed to examine the role flowering phenology plays in the reproduction of Echinacea angustifolia. Jennifer Ison planted this plot in 2006 with 3,961 individuals selected for extreme (early or late) flowering timing, known as phenology. Using this phenological data, we explore how flowering phenology influences reproductive fitness and estimate the heritability of flowering time in E. angustifolia. In the summer of 2024, we conducted phenology between July 10th and July 19th. During measure, we visited 1,725 positions of the 3,961 positions originally planted. We measured 1,190 living plants, of which 302 were flowering with a total of 402 flowering heads (count excludes vertical developments). In the fall, we harvested 375 heads from exPt02. We observed much lower levels of seed predation by ground squirrels this year than the past few years.

The team flags out experimental plot 2
  • Start year: 2005 (crossing) and 2006 (planting)
  • Location: Hegg Lake WMA (DNR)
  • Overlaps with: 
  • Data collected: 
    • Phenology data (dates of flowering stages)
      • data in cgData repo: ~/cgData/summer2024/exPt02Phenology
    • Measure data (status, size, etc.)
      • data in SQL database
    • Harvest data (IDs of harvested heads, missing achenes, etc)
      • detailed data in dropbox: dropbox/CGData/140_reconcile/reconcile2024/reconcileOut/2024harvestListReconciledExport.csv
      • data in SQL database
      • data in echinaceaLab package (hh.2024)
  • Samples collected:
    • 375 heads harvested
      • at CBG for processing
  • Products:
    • Papers
      • Pearson, A.E., Z. Zelman, L.A. Hill, M.A. Stevens, E.X. Jackson, M.M.N. Incarnato, R.M. Johnson, S. Wagenius, and J.L. Ison. 2023. Pollinators differ in their contribution to the male fitness of a self-incompatible composite. American Journal of Botany 110(6): e16190. https://doi.org/10.1002/ajb2.16190
      • Reed, W. J., J. L. Ison, A. Waananen, F. H. Shaw, S. Wagenius, R. G. Shaw. 2022. Genetic variation in reproductive timing in a long-lived herbaceous perennial. American Journal of Botany 109(11) 1861–1874: https://doi.org/10.1002/ajb2.16072
      • Page, M. L., Ison, J. L., Bewley, A. L., Holsinger, K. M., Kaul, A. D., Koch, K. E., Kolis, K. M., and Wagenius, S. 2019. Pollinator effectiveness in a composite: A specialist bee pollinates more florets but does not move pollen farther than other visitors. American Journal of Botany 106: 1487–1498. PDF
    • Grad student work
      • Wyatt Mosiman’s MS thesis (2024)
    • Amy Waananen’s paper “The fitness effects of outcrossing distance depend on parental flowering phenology in fragmented populations of a tallgrass prairie forb” (with co-authors Ison, Wagenius, and Shaw) was just accepted by New Phytologist–it includes data from parents in exPt01 and progeny in exPt02.
    • We may have missed some other products.

exPt05:

The only experimental plot at Staffanson Prairie Preserve (SPP), exPt05 was planted to compare progeny of maternal plants from burned and unburned sections of SPP. There were originally 2800 individuals planted, but high mortality made it impractical to visit the plot row-by-row. Now, we treat the plot like demography. We use our survey-grade GPS to find plants in exPt05 that have previously flowered and add more plants to the stake file if new plants in the plot flower. In 2024, we found 17 living plants in exPt05 during flowering/total demo, 8 of which were flowering! We also observed (but did not take data on) additional basal plants within the plot boundaries that appeared to be growing on a 1×1 meter grid. ExPt05 persists!

  • Start year: 2011
  • Location: Staffanson Prairie Preserve (TNC)
  • Overlaps with: 
  • Data collected: 
    • Demography data: head counts, rosette counts, etc.
      • demap input files have been updated with 2024
    • Spatial location for all flowering and some basal plants
      • demap input files have been updated with 2024
    • Harvest data (IDs of harvested heads, missing achenes, etc)
      • detailed data in dropbox: dropbox/CGData/140_reconcile/reconcile2024/reconcileOut/2024harvestListReconciledExport.csv
      • data in echinaceaLab package (hh.2024)
  • Samples collected:
    • None (we did not harvest heads in exPt05 this year)
  • Products:
    • None… yet!

exPt08:

Team members prepare to plant Pediomelum esculentum in exPt08.

qGen2/qGen3

Team Echinacea established quantitative genetics experiments to quantify additive genetic variance of fitness in Echinacea, with the idea that we can estimate evolutionary potential of study populations. The plants in qGen2 and qGen3 are plants in the 1996, 1997, and 1999 cohorts. These plants were crossed with pollen from plants in remnants to produce seed for qGen2 and qGen3, which now inhabit exPt08. Originally, 12,813 seeds were sown in the common garden. Seeds from the same cross (shared maternal and paternal plants) were sown in meter-long segments between nails. In the summer of 2024, we conducted phenology between July 10th and July 19th. A total of 3,253 seedlings were originally found, but due to gradual mortality we only searched 448 positions in 2024 for plants, and we found evidence of 314 living individuals. We identified 24 flowering plants in with a total of 29 heads, of which we harvested 23.

  • Start year: 2013 (qGen2) and 2015 (qGen3)
  • Location: exPt08 (Wagenius property)
  • Overlaps with: 
  • Data collected: 
    • Phenology data (dates of flowering stages)
      • data in cgData repo: ~/cgData/summer2024/exPt08Phenology
    • Measure data (status, size, etc.)
      • data in SQL database
    • Harvest data (IDs of harvested heads, missing achenes, etc)
      • detailed data in dropbox: dropbox/CGData/140_reconcile/reconcile2024/reconcileOut/2024harvestListReconciledExport.csv
      • data in SQL database
      • data in echinaceaLab package (hh.2024)
  • Samples collected:
    • 23 heads harvested
      • at CBG for processing
  • Products:
    • None… yet!

tplot

tplot is located within the bounds of exPt08. Plants of many species here were rescued from the landfill site. They we transferred as chunks of prairie sod, and individual transplants. This year during flowering and total demo, we encountered 14 living Echinacea plants from which we harvest 12 heads.

  • Start year: 1994 or 1995
  • Location: exPt08 (Wagenius property)
  • Overlaps with: 
  • Data collected: 
    • Demography data: head counts, rosette counts, etc.
      • demap input files have been updated with 2024
    • Spatial location for all flowering and some basal (total demo) plants
      • demap input files have been updated with 2024
    • Harvest data (IDs of harvested heads, missing achenes, etc)
      • detailed data in dropbox: dropbox/CGData/140_reconcile/reconcile2024/reconcileOut/2024harvestListReconciledExport.csv
      • data in echinaceaLab package (hh.2024)
  • Samples collected:
    • 12 heads harvested
      • at CBG for processing
  • Products:
    • None… yet!

Experimental plot management:

Just like other areas of the prairie, our experimental plots need management! Here’s a list of the stewardship activities that we conducted in or for our plots during 2024:

NU MS student Maddie Sadler shows off our sweet clover haul
  • None of our experimental plots burned in the fall or spring prior to the 2024 growing season
  • Mapped and removed hawkweed in exPt01
  • Removed sweet clover in exPt01
  • Removed poison ivy in exPt02
  • Harvested tall grasses (i.e., Andropogon gerardii & Sorghastrum nutans)
  • Collected seed to plant in p1, p2, & p8, including:
    • 1) Elise collected Carex brevior, Carex bicknellii, and Carex gravida from several sites and from plants that we established a few years ago near exPt01
    • 2) Liam established Viola pedatifida production tub,
    • 3) We collected a few additional species (including Galium boreale, Solidago missouriensis, Astragalus adsurgens, Dichanthelium leibergii, and Bromus kalmii) we plan to establish via plug in spring 2025

Psst – next year person writing this report; I ran my numbers using the script Dropbox/echProjAdmin/projectStatusReports/psr2024/wmGatherDataForReports2024.R. Maybe this can help you out.

Spring Prescribed Burns

Team Echinacea has successfully completed some spring prescribed burns! Our mighty team of seven (Stuart, Gretel, Jared, Wyatt, Fannie, Brad, and I) took to Minnesota this past week to conduct a handful of spring prescribed burns. We set off bright and early on Sunday morning at around 9am to make the 9 hour drive from Chicago Botanic Garden to our study sites in Minnesota. Weather in Minnesota on Monday and Tuesday allowed us to get multiple different sites done including the coveted P1 and P8 experimental plots. The sun was shining, the sky was clear, humidity was low, the wind was blowing just enough, and the grass was very dry making it a perfect day. The days were long and the temperatures were high (in the 80’s), but we polished off both days with some great food and great conversations which are essential to any good burn trip to keep up morale.

Experimental plot p1 during the burn (left) and after the burn (right)

Fannie using the drip torch for the first time (left) and Jared lecturing Blue on the importance of fire safety (right)

Not only did we get some good burns in, but we were able to visit Runestone County Park on Tuesday morning. We used this trip to see the current restoration work being done at the park, and it allowed us to find spots for potential signs discussing different topics such as why prescribed fire matters, the history of prairies, and more. We also used our time in MN to get many pictures and videos to be used for dissemination projects discussing why prescribed fire is important for native pollinators.

Of course it wouldn’t be a complete trip to Minnesota without a stop at Staffanson Prairie Preserve.

This is part of our project “How Do Prescribed Fires Affect Native Prairie Bees?”

Funding for this project was provided by the Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative-Citizen Commission on Minnesota Resources (LCCMR).

Ian presents thesis research

Ian Roberts presented his thesis research “Impacts of Prescribed Fire and Land Use History on Ground Nesting Bees” at the Chicago Botanic Garden on April 30th. The presentation was well received by those attendees in the room and those who attended via zoom. After the public presentation, Ian successfully defend his Masters thesis for the program in Plant Biology and Conservation at NU. Congratulations, Ian!

Ian’s research advances our understanding of ground nesting bees, prescribed fires, and nesting habitat for bees in remnant and restored tallgrass prairie. Stay tuned for a publication and recommendations for land managers!

Watch the video recording.

This is part of our project “How Do Prescribed Fires Affect Native Prairie Bees?”

Funding for this project was provided by the Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative-Citizen Commission on Minnesota Resources (LCCMR).

Presentation at Chicago Plant Science Symposium

Jared gave a presentation at the Chicago Plant Science Symposium on April 19th about our big prescribed fire experiment. He focused this talk on fire effects on plant reproduction & demography.

This is part of our project “How Do Prescribed Fires Affect Native Prairie Bees?”

Funding for this project was provided by the Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative-Citizen Commission on Minnesota Resources (LCCMR).

Emma presents poster on honors project

Emma presented results of her honor’s project at the poster symposium on April 15th at the U of MN. Emma assessed concentrations of several types of sugar in nectar collected from tiny florets of Echinacea plants. We are learning how prescribed fire affects sugars in nectar because nectar is an important food for pollinators, like bees. Emma worked in the lab of Dr. Rahul Roi at St Catherine University and was advised by Dr. Ruth Shaw at University of Minnesota. We are so proud of Emma!

Emma presenting her poster with Rahul & Ruth.

This is part of our project “How Do Prescribed Fires Affect Native Prairie Bees?”

Funding for this project was provided by the Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative-Citizen Commission on Minnesota Resources (LCCMR).

volunteer appreciation event

Wednesday evening (March 19) we gathered to share a meal & review many of our recent lab accomplishments. We made numerous advances in science, conservation, and education. This evening we focused on all the achenes we have been separating from heads & chaff, scanning, counting, randomizing, xraying, and classifying–all with the aim of estimating reproductive effort and success of Echinacea plants in our experimental plots and in select prairie remnants. Ian, Maddie, and Wyatt gave updates on projects they are working on.

Leslie, Ian, Kenn, Justine, Stuart, Marty, Wyatt, Allen, Sue, Julie, Maddie, Priti, Mike. Photo by Gretel.

Standing Up For Science

Members of Team Echinacea went to the Stand Up For Science rally in downtown Chicago today. It was good to be in solidarity with folks who care about science, our country, and our future.

Here’s a photo of Maddie, Ian, Wyatt, and Fannie taken by Stuart. We saw Mike and Shannon at the rally. Did Team Echinacea rally in other cities?

Learn more about attacks on science and what you can do to help:

https://standupforscience2025.org/

volunteers hours 2024

Team Echinacea includes many volunteers who help in the lab. Volunteers contribute to all steps in the ACE process to estimate reproductive effort and outcomes in Echinacea plants from experimental plots and observational studies. During 2024, our 16 volunteers devoted 2192.5 hours to the Echinacea Project! Here is a summary of hours.

initialshours
aw2886.0
cak31.5
cs1177.0
dstc71.0
eem7.0
jln132.5
jrd56.0
kja121.5
ljb55.0
lc247.0
ml106.0
mnm24.0
mh297.0
mdk3.0
pp98.0
scb280.0
TOTAL2192.5

We are very thankful for our incredible team of volunteers, the Echinacea Project would not be possible without their hard work and dedication!

 

2024 Update: Pollen and Nectar Quantity and Quality of Echinacea

We’re interested in investigating what resources are available to Echinacea visitors and learning more about the pollen and nectar Echinacea produces. We hope to learn if the nutritional resources available differ before and after burns. In 2022, Britney House developed methods for collecting nectar from Echinacea using microcapillary tubes. Read more about her methods here.

During the summer of 2024, the team collected pollen and nectar samples from Echinacea angustifolia at 12 sites in and around Solem Township, MN. We searched for and shot the ~10 plants (or, if few were available, as many as we could find) at each site that were closest to a random point. We then bagged up to five of the heads with pollinator exclusion bags for those 10 plants. Throughout the duration of their flowering, we collected pollen from all bagged plants and nectar from five of them per site.

We removed bags from pollen/nectar plants and backup plants when they were done flowering, and we collected until a a limit was set of a cumulative 10mm of nectar from each plant. This year we also collected immature florets from each bagged head at the start of sampling.

Following some experimentation, we conducted nectar collection only in the afternoons, while pollen collection could be done any time of day. In total, we collected vials of pollen, nectar, and vials containing immature florets from 60 plants. Pollen and nectar tubes were given to Rahul Roy at St. Catherine University in St. Paul, who will be doing pollen and nectar analysis. Tubes containing immature florets were sent with Grace Hirzel at North Dakota State University in Fargo, ND for pollen grain count and size analysis.

Data entry for collection datasheets is ongoing. Pollen data entry is started and nectar data is a little over half done with the help of Emma Reineke. Emma will also be using part of this dataset for her senior thesis project at the University of Minnesota.

Scans can be found at: Dropbox/teamEchinacea2024/z.pollenNectarDataEntry/scans.

  • Start year: 2024
  • Location: Various prairie remnants around Solem Township, MN
  • Overlaps with: bbFood, nectar experiment
  • Data collected: 
    • plant IDs (tag), location, flowering status, assessments for selection for study
      • Dropbox/enrtf/designField2024/focalPlants2024.csv
      • Dropbox/enrtf/designField2024/findAndBagPlants2024.xlsx
    • flowering day, immature floret tube ID, pollen from N anthers in tube, pollen tube ID, tt color, nectar tube ID, quantity of nectar (mm) per floret
      • Dropbox/enrtf/pollenNectar2024/scannedFieldDatasheets
  • Specimens collected: 
    • TBD immature florets (at North Dakota State)
    • 60 pollen tubes (at St. Kate’s)
    • TBD nectar tubes (at St. Kate’s)
  • Team members involved with this project: Summer team 2024, Rahul Roy (St. Kate’s), Emma Reineke (University of Minnesota), Jarrad Pasifrika and Grace Hirzel (North Dakota State University)
  • Products: pending
  • Funding: ENRTF


Grace Hirzel taking off a pollen excluder bag on an Echinacea angustifolia plant.

2024 Update: Echinacea hybrids (exPt 6,7,9) and Echinacea pallida flowering phenology

Echinacea pallida is a species of Echinacea that is not native to Minnesota. It was mistakenly introduced to our study area during a restoration of Hegg Lake WMA around 2006 (Stuart’s recollection). This is concerning, because we don’t know how a similar species may impact or local Echinacea angustifolia! Will they hybridize? Could pallida outcompete angustifolia? Ever since pallida have started springing up, Team Echinacea has visited the pallida restoration, taken flowering phenology, and collected demography on the non-native plant. We have decapitated all flowering E. pallida each year to avoid cross-pollination with the local Echinacea angustifolia. Each year, we record the number of heads on each plant and the number of rosettes, collect precise GPS points for each individual, and cut off all the heads before they produce fruits.

Echinacea pallida flowering

This year, we cut E. pallida heads on June 26th. Overall, we found and shot 172 flowering E. pallida plants with 512 normal heads in total, averaging 2.98 heads per plant, though the max was 20 on a single plant! These non-native plants were hearty with an average rosette count of 7.20 rosettes and an astounding individual with a maximum of 88 rosettes. We did not take phenology data on E. pallida this year.

Team 2024 returns to their vehicles after flagging, taking demography data on, and decapitating Echinacea pallida at Hegg Lake WMA
  • Start year: 2011
  • Location: Hegg Lake WMA (MN DNR)
  • Overlaps with: 
  • Data collected: 
    • Demography data: head counts, rosette counts, etc.
      • data in aiisummer2024 repo: ~/aiisummer2024/demo/demoGood2024.txt
    • Spatial location for every flowering E. pallida
      • data in aiisummer2024 repo: ~/aiisummer2024/surv/survGood2024.txt
  • Samples collected:
    • Echinacea pallida were not collected: decapitated heads were left on the ground next to the plants
    • A flowering echinacea at the aptly named nearby remnant “near pal” looked suspiciously like a hybrid (more robust than an angustifolia). We put a pollinator exclusion bag on the single head to prevent pollen spread, and later harvested the head and brought it back to the lab, where it is currently in the seed dryer. Keep an eye on tag 29239 in the future
  • Products:
    • None… yet! Besides a prairie with significantly less E. pallida reproduction

You can find more information about E. pallida flowering phenology and previous flog posts on the background page for the experiment.

exPt06

Experimental plot 6 was the first E. angustifolia x E. pallida hybrid plot planted by Team Echinacea. A total of 66 Echinacea hybrids were originally planted. All individuals have E. angustifolia dams and E. pallida sires. In 2024, we visited 23 positions, 4 of which were can’t find year 3 in 2023 and didn’t get their final double check. We found living plants at all positions but those four (so, 19)! Last year, for the first time, 3 plants flowered in this plot. This year, no plants flowered.

  • Start year: 2011 (crossing) and 2012 (planting)
  • Location: Wagenius property
  • Overlaps with:
    • Common garden experiment
  • Data collected: 
    • Measure data (status, size, etc.)
      • data in SQL database
  • Samples collected:
    • None (no flowering plants)
  • Products:
    • None… yet!

You can find more information about experimental plot 6 and previous flog posts about it on the background page for the experiment.

exPt07: 

Experimental plot 7 is the second E. pallida E. angustifolia plot. It contains conspecific crosses of each species as well as reciprocal hybrids, totaling 294 pdeigreed individuals. We took phenology records between July 10th and July 18th. There were 42 flowering plants this year; from these we harvested 87 heads. Heads in this plot were covered by pollinator exclusion bags during the growing season to prevent cross-pollination with nearby Echinacea populations.

Stuart demonstrates proper measuring technique in exPt07
  • Start year: 2012 (crossing) and 2013 (planting)
  • Location: Hegg Lake WMA (MN DNR)
  • Overlaps with: 
    • Common garden experiment
  • Data collected: 
    • Phenology data (dates of flowering stages)
      • data in cgData repo: ~/cgData/summer2024/exPt79Phenology
    • Measure data (status, size, etc.)
      • data in SQL database
    • Harvest data (IDs of harvested heads, missing achenes, etc)
      • detailed data in dropbox: dropbox/CGData/140_reconcile/reconcile2024/reconcileOut/2024harvestListReconciledExport.csv
      • data in echinaceaLab package (hh.2024)
  • Samples collected:
    • 87 heads harvested
      • at CBG for processing
  • Products:
    • None… yet!

You can find more information about experimental plot 7 and previous flog posts about it on the background page for the experiment.

exPt09: 

There were originally 745 seedlings planted in exPt09. Experimental plot 9 is a hybrid plot, but, unlike the other two hybrid plots, we do not have a perfect pedigree of the plants. That is because the E. angustifolia and E. pallida maternal plants used to generate seedlings for exPt09 were open-pollinated. At this point, some but not all plants in this plot were tested for paternity, revealing that there are some hybrids. This year, we took phenology records between July 9th and July 18th. During measuring, we searched at 292 positions and found evidence of 234 living plants in 2024. Of these individuals, 70 were flowering. We harvested 110 heads from this plot! Heads in this plot were covered by pollinator exclusion bags during the growing season to prevent cross-pollination with nearby Echinacea populations.

The team runs out reel tapes to aid in measuring exPt09
  • Start year: 2014
  • Location: Hegg Lake WMA (MN DNR)
  • Overlaps with: 
    • Common garden experiment
  • Data collected: 
    • Phenology data (dates of flowering stages)
      • data in cgData repo: ~/cgData/summer2024/exPt79Phenology
    • Measure data (status, size, etc.)
      • data in SQL database
    • Harvest data (IDs of harvested heads, missing achenes, etc)
      • detailed data in dropbox: dropbox/CGData/140_reconcile/reconcile2024/reconcileOut/2024harvestListReconciledExport.csv
      • data in echinaceaLab package (hh.2024)
  • Samples collected:
    • 110 heads harvested
      • at CBG for processing
  • Products:
    • None… yet!

You can find out more information about experimental plot 9 and flog posts mentioning the experiment on the background page for the experiment.