Members of Team Echinacea are freshly returned from a successful burn outing! We completed five experimental burns during our trip to western MN. A major win for the experimental design of our MN ENRTF funded research on prescribed fire and ground nesting bees as well as for conservation! Here is the scoop:
Late Friday night we got to the Hjelm House and were lucky enough to catch a glimpse of the Aurora Borealis. In hindsight, I think this auspicious sighting boded well for our good fortune in burning conditions.
On Saturday morning we headed to Torgeson’s to burn the northern unit. Because it was predicted to be a dry day, we got an early start and were ready to burn by 10:45. We got to see lots of spring flora before the burn: pucoons, violets, sedges, pussytoes, etc… These plants will be even happier next year. With help from Lee, the burn went very smoothly. Torgeson’s is a hilly site, so the burn was slope driven and we had a great view. Things are pretty greened up in the area, so the burn was quite smoky. USFWS, who were burning a big restoration right next door must have been burning cattails- look at that thick, brown smoke coming from the other side of the road. Almost like we are having bonfires at neighboring campsites. Cute!
Jared secures the break at torgen before we stand back and watch the fire burn out.
Next we ventured into Grant County. No burning there- and if you’ve been following along that may not be a surprise to you. So it was back to Douglas Co. After lunch the crew headed to hutch to burn the western unit. Another Hilly site. We prepped our breaks and were ready to go! Burn number 2 down!
Sunday was a no-burn day because wildfire smoke from Canada was hanging over many counties in MN. A great day to get work done on the porch and venture into Morris to revisit old haunts. We anxiously awaited the next day’s updated report on burn restrictions.
Monday morning we got the go ahead to burn in Grant county!! We called in our backups (former team members Daytona and Liam plus a few of Liam’s friends) and headed to Yellow Orchid Hill West to train our first time burners in at a smaller site. The wind was squirrely but our burn was successful and we were just a hop, skip and a jump away from the revered hulze unit. After 3 failed attempts, was this finally our day?
Stuart and Jared watch the last flames burn out in the center of hulze.
Yes! Drive down highway 55 and you will see for yourself! A hilly expanse of charred earth! A sight for sore eyes after the last burn way, way back in 2003.
By this time, restrictions were lifted in Douglas Co. and the crew headed to Nice Island for a final burn before calling it a day and heading back to the farmhouse. Over Jean’s rhubarb cake we envisioned a utopian or maybe dystopian future on team Echinacea where we have a high tech call center and everything is drone operated. We’ll keep you posted on the call center and the rest of the burns we hope to get done this season.
There are so many interesting questions to ask within the study design of our MN ENRTF funded research on prescribed fire and ground nesting bees! We are lucky to collaborate with researchers in the area who are taking them on.
Justin presents his research at the MSU-Mankato research symposium
Justin Kjorness, undergraduate at Minnesota State University-Mankato, worked with Drs. Mrganka De and Matt Kaproth (and many more) to collect soil samples at our remnants and restorations this summer. He has since been asking questions about the effects of prescribed fire regimes on soil physical properties. He presented these results at the MSU-Mankato research symposium this week!
Ants are an integral part of ecosystems, playing a role in seed dispersal, detritus removal, pest predation, and nutrient cycling. Because ants nest in the ground, they are particularly susceptible to any process that disturbs the earth and can be heavily impacted by land use practices and management decisions. Diane Roeder, at Augustana University, designed this survey to quantify ant species diversity in remnant and restored prairie patches in western MN. These sites are primarily managed by fire, a type of disturbance that has been hypothesized to impact ant species differently via mortality and/or changes in habitat structure. During the summer, Diane and members of team Echinacea sampled 45 prairie sites (30 remnant, 15 restored), deploying a total of 415 pitfall traps. Diane and her colleagues are in the process of sorting ants from other ground-dwelling invertebrates captured by the traps and will identify specimens to compare abundance, species richness, and community composition from sites under different management regimes. In addition to measuring diversity, They also deployed sentinel prey items to determine whether arthropod communities in these areas remove prey at different rates as a measure of ecosystem services provided by predatory arthropods. To do this, they set out small cages containing moth eggs and recorded the number of eggs removed. In the future, Diane hopes to compare the overall arthropod communities between these types of sites from multiple years of sampling.
Diane traveled all over our study area during her few days in Western Minnesota.
This pitfall trap was set up at a random bb point in our study area.
Start year: 2023
Location: Prairie remnants and restorations in Solem Township, MN.
For the ENRTF-funded research project investigating fire effects on ground-nesting bees, plant-pollinator interactions, and other insects within fragmented prairies, Team Echinacea sampled 45 total prairie sites (30 remnants and 15 restorations).
To obtain robust inferences, it is important to sample randomly so that our sampling effort is not biased by what we perceive to be “good” or “bad” habitat, even subconsciously. To this end, we sampled at random locations within each site. At each site, we established between 30 and 72 sampling locations with unique identifiers (four-digit bbpts, for “burning and bees sampling points”). Early in the summer, before sampling at these points began, we ground truthed the points to ensure we were not choosing in places where we could not sample at all (e.g., think a big rock, a water body, a big patch of poison ivy, a gravel road, etc.).
Jared generated a large number of random points for each site, more points than we actually intended to sample. trap. We visited these points using a high precision gps unit and evaluated whether to “keep” the points and assign them a bbpt or “reject” the point if it could not be sampled safely or effectively.
Jan, 2023 pollinator team member, ground truths bb points at Torgen.
Start year: 2023
Location: prairie remnants and restorations in Solem Township, MN
Overlaps with: ground nesting bees, fire x fragmentation, soils in remnants and restorations, floral resources in remnants and restorations, microhabitats in prairie remnants and restorations
Data collected: spatial locations of accepted bb points are in “~/Dropbox/geospatialDataBackup2023/convertedXML2023/bbptsForEnrtf”. Maps of bb points are located in “~/Dropbox/enrtf/emergenceTrapping2023”
During summer 2023, Team Echinacea Echinacea characterized local environmental conditions to better understand which environmental factors are associated with good habitat for ground-nesting bees. This microhabitat assessment complemented emergence trapping for our ENRTF funded research on fire’s influence on ground nesting bees habitats. We sampled local environmental conditions near randomly placed bbpts in remnants and restorations.
We used a light meter to quantify light availability via a measure of photosynthetically active radiation. We took PAR readings at 1 meter and at ground level ~40 cm NE of the bb point. We also used a soil penetrometer to quantify soil compaction at ~40 cm NE of the bb point.
Team Echinacea conducted microhabitat assessments for three rotations of bb points (rotations 1,2,&3) across 46 sites. Over the summer, we took microhabitat assessment measurements at a total of 1,238 bb points.
Blaire, high school participant 2023, takes a light measurement at a bb point. We were particular about position and timeframe to ensure consistent measurements.
Start year: 2023
Location: prairie remnants and restorations in Solem Township, MN
Data collected: light availability (par measurements) and Soil Compaction (psi measurements) are stored in ~Repos/bbnest/data/microhabitatDataCuration/curate2023MicrohabitatData.R
During the summer of 2023, Team Echinacea conducted floral surveys at randomly selected bb points in remnant prairies and restorations. We are interested in quantifying floral resources (i.e., food for bees) and we want to understand how fire influences the diversity and abundance of flowering plants.
At each focal point (bbpt) we identified species rooted within a 2 meter radius and recorded the furthest stage of development. We measured abundance by binning a range of floral units (i.e., 1-5 flowering units got label “5”).
Floral surveys were split into “visit group A” and “visit group B”. We surveyed different random points when revisiting sites. In total, we conducted 415 floral surveys across 45 sites.
Liam Poitra, a 2023 Summer Research Experience for Undergraduates (REU) Participant, contributed to this research project investigating the effects of fire on diversity and abundance of flowering plants. Liam assisted in fieldwork and data organization. Inventory, protocols, and blank datasheets for floral assessments are located in ~/Dropbox/enrtf/floralSurveys2023.
Liam Poitra, REU 2023, navigates to a floral assessment focal point at Staffanson Prairie Preserve. The 2-meter stick he carries will help keep track of what is in the bounds for survey.
Start year: 2023
Location: prairie remnants and restorations in Solem Township
In 2023, Team Echinacea did not conduct any fieldwork for this experiment.
Pollinator populations are declining worldwide, and pollinator habitat in western Minnesota has diminished over the years, but it is unclear whether the native bee community is changing as well. The Pollinators on Roadsides project, also known as the Yellow Pan Trap (YPT) study, is investigating how native bee diversity and abundance have changed from 2004-2022 and learning about whether the amount of agricultural land and grassland correspond to the nearby bee community.
In the lab, rock star pinner and volunteer Mike Humphrey finished pinning all 789 bees from 2022 on 6 April, 2023. Intern Alex Carroll brought the bees to Zach Portman, the bee taxonomist at the University of Minnesota, for identification on 6 June, 2023. Zach recently reported that he’s all done with our 2022 bees, and we will be picking them up from UMN next chance we get!
Mike shows off a finished bee case
Alex worked to put datasets together (view in Dropbox/ypt2004in2017/yptDatasets/) for this experiment to prepare us for when Zach finishes his identifications. Alex also created this to-do list of next steps:
When Zach finishes identifying the 2022 specimens, fill in zachGenus, zachSpecies, and zachSex for 2022 spids.
Remove 2022 spids that are nonbees.
Update 2017 collectDate. In 2017, traps were put out one day and then collected the next day. Some of the 2017 dates are the day the trap was put out and some are the collection day. These should be standardized. MAS figured out most of the timeline here: ypt2004in2017/yptDataAnalysis2022/collectionDatesAndMowedTraps/2017listOfCollectionDatesAndMowedTraps-11-May-2022.csv These dates are based on the 2017 summer datasheets: ypt2004in2017\YPT2017\YPTsummer2017\ypt2017FieldDatasheets.pdf
Locate missing trap numbers for 35 bees, all collected on 07/26/2004. There is a memo for half of the traps collected on 07/26/2004, but half (the outerloop) are missing. See ypt2004in2017/YPT2004/yptMemos2004/ypt04-js.doc
Determine what to do about missing specimens. Some specimens were identified by Sam Drogee in the past, but we couldn’t find the bee. SW remembers that Sam took some specimens, so he may still have them. A few specimens have gone missing. See the notes column.
Summary
Start year: 2004, rebooted in 2017
Location: Roadsides and ditches around Solem Township, Minnesota. GPS coordinates for each trap are located here: ~Dropbox\teamEchinacea2022\YPTsummer2022\yptTrapLocations2022.csv
Zach Portman identified all specimens from 2004-2019, and the specimens are stored in eight cases at the CBG lab.
Mike finished pinning specimens from 2022 on April 6th, 2023. Alex delivered 2 cases of specimen to Zach on June 6th 2023. A little over a month ago, Zach said he had a backlog and wouldn’t get to them for a month. So, hopefully he’ll be working on them soon!
Team members involved with this project: Geena Zebrasky (2022), Mia Stevens (2020-2023), Alex Carroll (2021-2023), Erin Eichenberger (2019-2020), Anna Stehlik (2020), Shea Issendorf (2019), Mike Humphrey (2018-2021), John Van Kampen (2018-2019), Kristen Manion (2017-2018), Evan Jackson (2018), Alex Hajek (2017), and Steph Pimm Lyon (2004)
Funding for this project was provided by the Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative-Citizen Commission on Minnesota Resources (LCCMR). The Trust Fund is a permanent fund constitutionally established by the citizens of Minnesota to assist in the protection, conservation, preservation, and enhancement of the state’s air, water, land, fish, wildlife, and other natural resources. Currently 40% of net Minnesota State Lottery proceeds are dedicated to growing the Trust Fund and ensuring future benefits for Minnesota’s environment and natural resources.
You can read more information about the pollinators on roadsides project here.
In July, 2023, a team from Minnesota State University, Mankato visited Team Echinacea to sample prairie soil. They are investigating how fire and management history influences physical, chemical and biological soil properties. Differences in soils may also help explain plant fitness and native bee nesting patterns. After three hot days, 263 samples were collected from 28 sites!
Back in Mankato, four undergraduate students processed the soil samples by sieving and weighing out the field collections. The preliminary results show soil bulk density is lower in remnant prairies compared to restored prairies. This makes sense in that remnant prairies have retained their organic-matter rich topsoil, infiltrated with plant roots and filled with pore spaces that develop over time in natural prairies. The soil bulk density is also lower on flat (no slope) topography, in part due to illuviation (deposition) of nutrients and organic material from nearby sloped areas.
The team hopes to continue its investigations to understand which soil properties are sensitive to different management histories and how the patchwork of fragmented prairies in the region vary in carbon, nitrogen and biological activity. These data should provide foundational information for many additional projects.
The Mankato soil team gathers around a bbPoint to discuss sampling. The team visited bbPoints in remnants and restorations over a 3 day period.
Start year: 2023
Location: : 28 study plots on private, federal and state land with different land use histories: remnant and restored grassland
Data collected: Soil bulk density, maximum water-holding capacity, gravimetric soil moisture content, soil aggregate stability (SLAKES), total organic C, total N, inorganic N (plant available forms: ammonium and nitrate), aerobic respiration rate (proxy for microbial activity and decomposition)
Samples or specimens collected: Topsoil bulk density and additional soil (top 15 cm) for each bee nesting trap
In 2022, Team Echinacea collected an additional summer of data for the Pollinators on Roadsides project after receiving funding through the Minnesota Environment and Natural Resources Trust Fund (ENRTF). Pollinator populations are declining worldwide, and pollinator habitat in western Minnesota has diminished over the years, but it is unclear whether the native bee community is changing as well. The Pollinators on Roadsides project, also known as the Yellow Pan Trap (YPT) study, is monitoring how native bee diversity and abundance have changed from 2004-2022 and investigating whether the amount of agricultural land and grassland correspond to the nearby bee community.
In summer 2022, Team Echinacea installed pan traps at 39 of the 40 locations that were used in previous years. The traps were placed along roadsides in Solem Township, and Geena Zebrasky also surveyed the plant diversity surrounding each trap. Geena and Alex set out the traps 7 times during the summer, once per week starting on July 7th and ending on August 17th. We filled the yellow bowls with soapy water each morning starting at ~8:00 am and collected bees from the traps in the afternoon starting at ~4:00 pm. We strained the bees through a sieve and stored them in vials filled with 70% ethanol. Over the summer, we collected seven coolers full of vials, which are now stored in the freezer in Illinois.
Geena installs a pan trapDelicious bee and fly soupGeena strains out the beesA pan trap awaits bee visitors
At the lab, volunteer Mike Humphrey has been pinning the bees that we collected during the summer. So far, Mike has emptied three of the seven coolers, and he has pinned 420 specimens from 90 vials. Each specimen is assigned a specimen id number (SPID), which started with SPID 20001 this year. In previous years, we glued tiny bees to point mounts, but this year we are gluing them directly to a #2 pin based on a recommendation by Zach Portman, the bee taxonomist at the University of Minnesota.
Last winter, we sent Zach the insects that had been collected in 2004, 2017, 2018, and 2019, and he identified the bees to species. Over the 4 years, we caught 1,901 bees from 76 different species!
The next steps are to finish pinning the bees from summer 2022, add descriptive specimen labels, and send the bees to Zach for identification. Mia and Alex are working on a bee community analysis and a landscape analysis.
Mike separates bees from flies under the microscopeMike and Lindsey pin bees
Start year: 2004, rebooted in 2017
Location: Roadsides and ditches around Solem Township, Minnesota. GPS coordinates for each trap are located here: ~Dropbox\teamEchinacea2022\YPTsummer2022\yptTrapLocations2022.csv
Data collected: All YPT data can be found in ~Dropbox\ypt2004in2017
Pinning datasheets are located here: ~Dropbox\ypt2004in2017\YPT2022
Zach’s species identifications are located here: ~Dropbox\ypt2004in2017\yptDataAnalysis2022\speciesIdDataEntryBySpidVerified.csv
Field datasheets from summer 2022 are located here: ~Dropbox\ypt2004in2017\YPTsummer2022
Specimens collected:
Bees collected in summer 2022 were stored 7 coolers of vials. Mike has pinned bees from coolers 1-3, and these specimens are labeled with SPIDs and stored in a case in the lab. Cooler 4 is in the freezer at CBG, and Stuart has coolers 5-7.
Zach Portman identified all specimens from 2004-2019, and the specimens are stored in eight cases at the CBG lab.
Team members involved with this project: Geena Zebrasky (2022), Mia Stevens (2020-2023), Alex Carroll (2021-2023), Erin Eichenberger (2019-2020), Anna Stehlik (2020), Shea Issendorf (2019), Mike Humphrey (2018-2021), John Van Kampen (2018-2019), Kristen Manion (2017-2018), Evan Jackson (2018), Alex Hajek (2017), and Steph Pimm Lyon (2004)
Funding for this project was provided by the Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative-Citizen Commission on Minnesota Resources (LCCMR). The Trust Fund is a permanent fund constitutionally established by the citizens of Minnesota to assist in the protection, conservation, preservation, and enhancement of the state’s air, water, land, fish, wildlife, and other natural resources. Currently 40% of net Minnesota State Lottery proceeds are dedicated to growing the Trust Fund and ensuring future benefits for Minnesota’s environment and natural resources.
You can read more information about the pollinators on roadsides project here.