The Leadplant Flower Moth (Schinia lucens), is a species of special concern in Minnesota. It used to be common and have an extensive range, but now populations are few and far between. Douglas and Grant counties (our study area) are not included on its current range map. Nonetheless, REU participant Liam Poitra thought that it was possible that this moth might persist in some of the remnants in our study area. Liam planned and conducted a systematic search for the leadplant flower moth for his REU project. If Liam found enough moths to estimate populations sizes or density, then he would investigate characteristics of their habitat for his REU project. If not, then he would transition to another project. He found one individual moth and took some great photos. Details of the search are in Liam’s report.
Start year: 2023
Location: prairie remnants in Solem & Land Townships
Ants are an integral part of ecosystems, playing a role in seed dispersal, detritus removal, pest predation, and nutrient cycling. Because ants nest in the ground, they are particularly susceptible to any process that disturbs the earth and can be heavily impacted by land use practices and management decisions. Diane Roeder, at Augustana University, designed this survey to quantify ant species diversity in remnant and restored prairie patches in western MN. These sites are primarily managed by fire, a type of disturbance that has been hypothesized to impact ant species differently via mortality and/or changes in habitat structure. During the summer, Diane and members of team Echinacea sampled 45 prairie sites (30 remnant, 15 restored), deploying a total of 415 pitfall traps. Diane and her colleagues are in the process of sorting ants from other ground-dwelling invertebrates captured by the traps and will identify specimens to compare abundance, species richness, and community composition from sites under different management regimes. In addition to measuring diversity, They also deployed sentinel prey items to determine whether arthropod communities in these areas remove prey at different rates as a measure of ecosystem services provided by predatory arthropods. To do this, they set out small cages containing moth eggs and recorded the number of eggs removed. In the future, Diane hopes to compare the overall arthropod communities between these types of sites from multiple years of sampling.
Start year: 2023
Location: Prairie remnants and restorations in Solem Township, MN.
This experiment was designed to quantify how well Echinaceaangustifolia populations are adapted to their local environments. In 2008, Amy Dykstra collected achenes from Echinacea populations in western South Dakota, central South Dakota, and Minnesota and then sowed seeds from all three sources into experimental plots near each collection site. Each year, Team Echinacea takes a demographic census at the western South Dakota and Minnesota plots; we abandoned the central South Dakota plot after it was inadvertently sprayed in 2009, killing all the Echinacea.
In 2023, we found a total of 119 basal plants and 8 flowering plants. All of the flowering plants observed in 2023 were in the western South Dakota sowing site. Only 2 plants in the Minnesota site have ever produced flowers. In contrast, 31 plants flowered in the western South Dakota site in 2022 alone. Mortality has been much higher in Minnesota than in western South Dakota; thus, the total number of plants at each sowing site is now about equal.
Start year: 2008
Location: Grand River National Grassland (Western South Dakota), Samuel H. Ordway Prairie (Central South Dakota), Staffanson Prairie Preserve (West Central Minnesota), and Hegg Lake WMA (West Central Minnesota).
Data collected: Plant fitness measurements (plant status, number of rosettes, number of leaves, and length of longest leaf)
Samples or specimens collected: Heads from all flowering plants; Amy stores the heads in her office at Bethel University.
Products:Dykstra, A. B. 2013. Seedling recruitment in fragmented populations of Echinacea angustifolia. Ph.D. Dissertation. University of Minnesota. PDF
You can read more about Dykstra’s local adaptation experiment and see a map of the seed source sites on the background page for this experiment.
Small remnant Echinacea populations may suffer from inbreeding depression. To assess whether gene flow (in the form of pollen) from another population could “rescue” these populations from inbreeding depression, we hand-pollinated Echinacea from six different prairie remnants with pollen from a large prairie remnant (Staffanson Prairie) and from a relatively small population (Northwest Landfill) in 2008. We also performed within-population crosses as a control. Amy Dykstra (with help from Caroline Ridley) planted the achenes (seeds) that resulted from these crosses in an experimental plot at Hegg Lake WMA.
We sowed a total of 15,491 achenes in 2008. 449 of these achenes germinated and emerged as seedlings. Each summer, we census the surviving plants and measure them.
In the 2023 census, Amy found 23 surviving basal plants and no flowering plants. She had observed 26 basal plants in 2022. Mortality was high during the first four years, but has been lower as the surviving plants have increased in age.
Data collected: Plant fitness measurements (plant status, number of rosettes, number of leaves, and length of longest leaf), and notes about herbivory. Contact Amy Dykstra to access this data.
Samples or specimens collected: NA
Products: Dykstra, A. B. 2013. Seedling recruitment in fragmented populations of Echinacea angustifolia. Ph.D. Dissertation. University of Minnesota. PDF
You can read more about Dykstra’s interpopulation crosses, as well as links to prior flog entries mentioning the experiment, on the background page for this experiment.
During the summer of 2023, Team Echinacea embarked on an ENRTF funded mission to better understand how prescribed fires influences solitary bee nesting habitat, food resources, and diversity is critical for providing recommendations about how prescribed fire should be used to promote pollinator conservation and healthy prairie.
We surveyed solitary bee diversity and nesting habitat before and after prescribed fires in a subset of 30 prairie remnants and 15 prairie restorations to determine how prescribed fire affects solitary bee nesting habitat and abundance. We used emergence traps to investigate composition of solitary bees in prairies. This was complemented by detailed measures of soil and litter to characterize how prescribed burning influences the nesting habitat (read more here).
We deployed emergence traps at our random points (bb points) in prairie remnants and restorations in mid-June – early September. Our deployment spanned three rotations of bb points and we put out a total of ~1,238 emergence traps.
As of September 28, members of Team Echinacea had processed 850 vials, 122 of which contained bees. Our preliminary catch rate is 14%! These specimens were pinned and are currently at Chicago Botanic Garden, awaiting transportation to University of Minnesota where Zach Portman, a bee taxonomist, will identify them. Team Echinacea also collected lots of non-bee bycatch while processing specimens collected in the traps. Bycatch is currently stored in our freezer at Chicago Botanic Garden.
Ian Roberts, a M.S. student with the Echinacea Project, has taken charge of the Emergence trapping project and is currently coordinating data entry. When emergence trapping resumes in the 2024 field season, we will be well set up, thanks to detailed written and videotaped protocols made by our summer 2023 pollinator team. The prtocol can be found here: “~/Dropbox/enrtf/emergenceTrapping2023/Emergence Trap Protocol.pdf”. Video instructions are located in “~/Dropbox/enrtf/emergenceTrapping2023/exampleVideos”.
Start year: 2023
Location: prairie remnants and restorations in Solem Township, MN.
For the ENRTF-funded research project investigating fire effects on ground-nesting bees, plant-pollinator interactions, and other insects within fragmented prairies, Team Echinacea sampled 45 total prairie sites (30 remnants and 15 restorations).
To obtain robust inferences, it is important to sample randomly so that our sampling effort is not biased by what we perceive to be “good” or “bad” habitat, even subconsciously. To this end, we sampled at random locations within each site. At each site, we established between 30 and 72 sampling locations with unique identifiers (four-digit bbpts, for “burning and bees sampling points”). Early in the summer, before sampling at these points began, we ground truthed the points to ensure we were not choosing in places where we could not sample at all (e.g., think a big rock, a water body, a big patch of poison ivy, a gravel road, etc.).
Jared generated a large number of random points for each site, more points than we actually intended to sample. trap. We visited these points using a high precision gps unit and evaluated whether to “keep” the points and assign them a bbpt or “reject” the point if it could not be sampled safely or effectively.
Start year: 2023
Location: prairie remnants and restorations in Solem Township, MN
Overlaps with: ground nesting bees, fire x fragmentation, soils in remnants and restorations, floral resources in remnants and restorations, microhabitats in prairie remnants and restorations
Data collected: spatial locations of accepted bb points are in “~/Dropbox/geospatialDataBackup2023/convertedXML2023/bbptsForEnrtf”. Maps of bb points are located in “~/Dropbox/enrtf/emergenceTrapping2023”
During summer 2023, Team Echinacea Echinacea characterized local environmental conditions to better understand which environmental factors are associated with good habitat for ground-nesting bees. This microhabitat assessment complemented emergence trapping for our ENRTF funded research on fire’s influence on ground nesting bees habitats. We sampled local environmental conditions near randomly placed bbpts in remnants and restorations.
We used a light meter to quantify light availability via a measure of photosynthetically active radiation. We took PAR readings at 1 meter and at ground level ~40 cm NE of the bb point. We also used a soil penetrometer to quantify soil compaction at ~40 cm NE of the bb point.
Team Echinacea conducted microhabitat assessments for three rotations of bb points (rotations 1,2,&3) across 46 sites. Over the summer, we took microhabitat assessment measurements at a total of 1,238 bb points.
Start year: 2023
Location: prairie remnants and restorations in Solem Township, MN
Data collected: light availability (par measurements) and Soil Compaction (psi measurements) are stored in ~Repos/bbnest/data/microhabitatDataCuration/curate2023MicrohabitatData.R
Every year since 1996, Team Echinacea members record flowering phenology, taking measuring data and harvest heads of thousands of Echinacea angustifolia plants in common garden experiments. These experimental plots are prairie restorations and abandoned agriculture fields that are managed as grassland habitat. Some plots have multiple ongoing experiments within. Currently, the Echinacea Project currently has 10 established experimental plots.
This project status report will contain updates on experimental plots 1, 2, 4, 5 and 8, as well as management updates for all plots. Specific reports for the remaining experimental plots can be found on separate posts including Amy Dykstra’s plot (exPt03), the hybrid plots (exPt06, exPt07, exPt09), and the West Central Area common garden (exPt10).
exPt01: Experimental plot 1 was first planted in 1996 (cleverly termed the 1996 cohort), and has been planted with nine other experiments in subsequent years, with the most recent planting being Amy Waananen’s inter-remnant crosses. It is the largest of the experimental plots, with over 10,000 planted positions; experiments in the plot include testing fitness differences between remnants (1996, 1997, 1999), quantifying effects of inbreeding (inb1, inb2), and assessing quantitative genetic variation (qgen1). There are also a number of smaller experiments in it, including fitness of Hesperostipa spartea, aphid addition and exclusion, and pollen addition and exclusion (the last experiment was continued the summer of 2023 and will have separate update posts). In 2023, we visited 3,699 of the 10,992 positions planted and found 3,118 alive. 560 plants were classified as “flowering” in exPt01 this year. This is a little less than half of the plants that flowered in summer 2022 (1,111) – an interesting note considering exPt01 was burned the spring of both 2022 and 2023. In summer 2023, we harvested 796 total Echinacea heads in exPt01. We also added 270 additional staples to the experimental plot this year, signifying positions were a living plant has not been found for over three years.
Some numbers for experiments within exPt01
Inb1: The INB1 experiment investigates the relationship between inbreeding level and fitness in Echinacea angustifolia. Each plant in experiment INB1 originates from one of three cross types, depending on the relatedness of the parents: between maternal half siblings; between plants from the same remnant, but not sharing a maternal or paternal parent; and between individuals from different remnants. All individuals were planted in 2001. We continued to measure fitness and flowering phenology in these plants. In 2023, of the original 557 plants in INB1, 85 were still alive. Of the plants that were alive this year, 24 of them were flowering; this count is down from summer of 2022 where 40 of the plants were flowering.
qgen: The qGen1 (quantitative genetics) experiment in p1 was designed to quantify the heritability of traits in Echinacea angustifolia. We are especially interested in Darwinian fitness. Could fitness be heritable? During the summer of 2002 we crossed plants from the 1996 & 1997 cohorts of exPt01. We harvested heads, dissected achenes, and germinated seeds over the winter. In the spring of 2003 we planted the resulting 4468 seedlings (this great number gave rise to this experiment’s nickname “big batch”). 1,417 plants in qGen1 were alive in 2023. Of those plants, 298 flowered this summer.
Other plots:
exPt02: To examine the role flowering phenology plays in the reproduction of Echinacea angustifolia, Jennifer Ison planted this plot in 2006 with 3,961 individuals selected for extreme (early or late) flowering timing, or phenology. Using this phenological data, we explore how flowering phenology influences reproductive fitness and estimate the heritability of flowering time in E. angustifolia. In the summer of 2023, we visited 1,855 positions of the 3,961 positions originally planted. We measured 1,283 living plants, of which 118 were flowering, with a total of 148 flowering heads. In the fall, we harvested 67 heads from exPt02. The large difference between the number of heads and the number harvested has to do with high levels of seed predation, mainly by ground squirrels. Last year, Will, Jennifer, and other members of Team Echinacea published a paper in the American Journal of Botany using data from exPt02 – check it out here! Location: Hegg Lake WMA
exPt04: Experimental plot 4 was planted to gauge whether Echinacea from small remnant populations could be genetically rescued via an outcross to larger, more genetically diverse populations. Caroline Ridley and other members planted this plot in 2008. We did not visit exPt04 this year. Location: Hegg Lake WMA
exPt05: The only experimental plot planted at Staffanson Prairie Preserve (SPP), exPt05, was planted to compare progeny of maternal plants from burned and unburned sections of SPP. There were 2800 plants planted originally, but high mortality made it impractical to visit the plot row-by-row. Now, we and treat the plot like demography. We use our survey-grade GPS to find plants in exPt05 that have previously flowered and add more plants to the stake file if new plants in the plot flower. In 2023 we found 11 living plants, none of which were flowering! We did locate one new flowering plant within the plot boundaries. Location: Staffanson Prairie Preserve
exPt08: Team Echinacea established quantitative genetics experiments to quantify additive genetic variance of fitness in Echinacea, with the idea that we can estimate evolutionary potential of study populations. The maternal parents of qGen2 and qGen3 are plants in the 1996, 1997, and 1999 cohorts. These plants were crossed with pollen from plants in remnants to produce seed for qGen2 and qGen3, which now inhabit exPt08. Originally, 12,813 seeds were sown in the common garden. Seeds from the same cross (shared maternal and paternal plants) were sown in meter-long segments between nails. A total of 3,253 seedlings were originally found, but only 385 plants were found alive in 2023. There were 15 flowering plants in 2023, and 15 heads. On a side note, one additional flowering plant was found in t-plot, and we harvested three heads from that. Location: Wagenius property
Experimental plot management:
Burned exPt01 (3 May 2023) and exPt08 (17 May 2023)
Replanted pedicularis in exPt01 and exPt10, augmenting Drake’s experimental treatments (replaced ones that died)
Broadcast seed in p8 after the spring burn and in the fall, including Comandra umbellata
Stuart trimmed flowering A. gerardii and S. nutans just north of tplot
Some plots in hegg (not exPt02) got run over by heavy machinery
We did not:
Treat sumac
Weed in exPt01 (except hawkweed)
Treat ash in exPt08, but we noticed that ash south of plot responded favorably to last year’s treatment
Details
Start year: Differs between experiment, see above. First ever experimental plot was in 1996.
Location: Differs between experiment, see above.
Overlaps with: …everything!
Data collected: Raw measuring data can be found in cgData repository. Processed data will be uploaded to SQL database. Currently, SQL database has measuring data up until 2022.
Samples or specimens collected: See above for total harvested heads in each plot.
Products: Many publications and independent projects.
Location: Hegg Lake WMA. Start year: 2011. Echinacea pallida is a species of Echinacea that is not native to Minnesota. It was mistakenly introduced to our study area during a restoration of Hegg Lake WMA. Since 2011, Team Echinacea has visited the pallida restoration, taken flowering phenology, and collected demography on the non-native plant. We have decapitated all flowering E. pallida each year to avoid cross-pollination with the local Echinacea angustifolia. Each year, we record the number of heads on each plant and the number of rosettes, collect precise GPS points for each individual, and cut off all the heads before they produce fruits.
This year, we cut E. pallida heads on June 22nd. We installed pollinator exclusion bags on select heads of 10 plants rather than immediately cutting them as a part of our quantity and quality of Echinacea pollen and nectar experiment. Overall, we found and shot 73 flowering E. pallida plants, and 193 heads in total, averaging 2.6 heads per plant. These non-native plants were hearty with an average rosette count of 6 rosettes and an individual with a maximum of 20 rosettes! We only did surv on plants with new tags this year, a total of 4. We did not take phenology data on E. pallida this year.
You can find more information about E. pallida flowering phenology and previous flog posts on the background page for the experiment.
Location: near exPt8. Start year: Crossing in 2011, planting in 2012. Experimental plot 6 was the first E. angustifolia x E. pallida hybrid plot planted by Team Echinacea. A total of 66 Echinacea hybrids were originally planted. All individuals have E. angustifolia dams and E. pallida sires. In 2023, we visited 23 positions and found 17 living plants. This year, 3 plants flowered in this plot; this is the first year any plants have flowered in p6! These were allowed to reach day one or two of flowering in order to assess their pollen color before we decapitated them.
Flowering plant in exPt06! Note the paler pollen color compared to the typical E. Angustifolia
You can find more information about experimental plot 6 and previous flog posts about it on the background page for the experiment.
Location: Hegg Lake WMA. Start year: Crossing in 2012, planting in 2013. Experimental plot 7 is the second E. pallida x E. angustifolia plot. It contains conspecific crosses of each species as well as reciprocal hybrids, totaling 294 individuals. This summer, we visited 150 positions, and of these plants, we found evidence of 121 living plants. We did not use pollinator exclusion bags in exPt07 this year. There were 19 flowering plants this year; from these we harvested 32 heads. We have not yet used the pedigree data to see what number of these plants are hybrids or not.
You can find more information about experimental plot 7 and previous flog posts about it on the background page for the experiment.
Location: Hegg Lake WMA. Start year: 2014. Experimental plot 9 is a hybrid plot, but, unlike the other two hybrid plots, we do not have a perfect pedigree of the plants. That is because the E. angustifolia and E. pallida maternal plants used to generate seedlings for exPt9 were open-pollinated. We need to do paternity analysis to find the true hybrid nature of these crosses (assuming there are any hybrids). We did not use pollinator exclusion bags in exPt09 this year. There were originally 745 seedlings planted in exPt9. We searched at 292 positions and found evidence of 238 living plants in 2023. Of these individuals, 30 were flowering. We harvested 39 heads from this plot!
You can find out more information about experimental plot 9 and flog posts mentioning the experiment on the background page for the experiment.
Data collected for exp679: For all three plots, we collected flowering status, rosette count, leaf length, head count and head height. All measuring data can be found in the cgdata repository (~/cgdata/summer2023/measureGood). Measuring data should be uploaded to SQL database eventually, but it is not currently there for 2023. For experimental plots 7 and 9, we also took phenology data starting on July 7th and ending on July 12th, which we scaled back from previous years. This data can be found in the cgdata repository (~cgdata/summer2023/p79phenology).
Data collected for E. pallida demography: Demography data, head counts, rosette counts, GPS points shot for each E. pallida with a new tag. Find demo and surv records as well as GPS points in demap.
We’re interested in investigating what resources are available to Echinacea visitors and learning more about the pollen and nectar Echinacea produces. We hope to learn if the nutritional resources available differ before and after burns. In 2022, Britney House developed methods for collecting nectar from Echinacea using microcapillary tubes. Read more about her methods here.
During the summer of 2023, the team collected pollen and nectar samples from Echinacea angustifolia at 19 sites in and around Solem Township, MN (plants at Hegg Lake were Echinacea pallida). We searched for and shot the ~20 plants (or, if few were available, as many as we could find) at each site that were closest to a random point. We then selected ten of those plants to bag up to three of their heads with pollinator exclusion bags. Throughout the duration of their flowering, we collected pollen from all bagged plants and nectar from five of them per site.
Stuart collects nectar from an Echinacea head
Midway through the experiment (mid-July), we removed bags from some of the pollen only plants to adjust our sample size to only the five pollen/nectar plants plus two backups per site. We removed bags from pollen/nectar plants and backup plants when they were done flowering, we’d collected a cumulative 50 mm of nectar from them, or we had received less than 15 mm of nectar from the plant in the last three visits (the latter was more of a guideline than a rule, used to save time by eliminating plants that were unlikely to provide us with enough nectar for analysis). At the Hegg pallida restoration, any heads that were not originally bagged were decapitated, and all heads were decapitated upon the final removal of their bags.
Following some experimentation, we conducted nectar collection only in the afternoons, while pollen collection could be done any time of day. In total, we collected 856 vials of pollen and 580 vials of nectar from 104 plants. These were given to Rahul Roy and Margaret Medini at St. Catherine University in St. Paul, who will be doing data analysis.
Data entry for collection datasheets is complete, and verified csvs for each site can be found at: Dropbox/teamEchinacea2023/z.pollenNectarDataEntry/coreVerified. Scans can be found at: Dropbox/teamEchinacea2023/z.pollenNectarDataEntry/scans.
Start year: 2023
Location: Various prairie remnants and one restoration (Hegg Pallida) around Solem Township, MN