Categories

2021 Update: Liatris arthropods on heads

For Wesley’s individual project, we made pollinator visitation observations and noted the presence or absence of other arthropods on Liatris aspera heads. Using the focal plants from the Liatris fire and flowering study, we were able to perform 95 5-minute observation periods on 84 individual plants. Most visitor identifications were made by eye in the field; however, we captured one bumblebee (released upon identification) and one fly (captured and frozen for future identification). We also recorded presence/absence data for Pennsylvania leatherwings, ants, ambush bugs, spiders, and other beetles.

All focal plants from the Liatris fire and flowering study were brought back to the lab, where the arthropod experiment is continuing via the quantification of seed predation. We have also encountered living larvae throughout the Liatris cleaning process which we hope to identify, possibly through rearing.

  • Start year: 2021
  • Location: 22 prairie remnant sites in and around Solem Township, MN
  • Overlaps with: Liatris fire and flowering
  • Data collected: Scanned datasheets and their typed versions can be found in ~Dropbox/remLiatris/liatrisObservations
  • Samples or specimens collected: 1 fly was captured for identification. Additionally, 234 focal plants were harvested. These plants are currently being cleaned and processed in the lab.
  • Products: Wesley’s REU was based on this project, which may at some point result in a paper or poster. Stay tuned!

2021 Update: Seedling establishment (aka sling)

This field season, the team continued the seedling recruitment experiment begun in 2007. The original goal of the project was to determine seedling establishment and growth rates in remnant populations of Echinacea angustifolia. Seedling recruitment rates are rarely studied in the field, and this is one of the few studies tracking recruitment in the tallgrass prairie. From 2007 to 2013 in spring, Team Echinacea visited plants which had flowered in the preceding year, and they searched near these maternal plants to find any emerging seedlings. Each fall since then, the team has searched for the seedlings, then juveniles, and measured them.

In 2021, Team Echinacea visited a subset of the sling plants at 12 prairie remnants from September 21st to September 29th. The team visited 62 focal maternal plants and searched for 117 sling plants of the original 955 seedlings. In total, the team found 49 basal plants, 2 dead this year’s leaves, 3 dead last year’s leaves, and 3 flowering plants! One of these heads, tag 18136 from East Elk Lake Road, was harvested and is currently being cleaned in the lab at the Chicago Botanic Garden. The team did not find the remaining 60 sling plants, and 17 of these plants have not been found for the past 3 years, so they will not be visited in 2022. No slings have been found at East of Town Hall and Northwest of Landfill for the past three years, so the team will not visit these sites in 2022. Unfortunately, after a long, dry summer, many of the plants were crispy and hard to see, especially at Riley and East Riley. Next year, the team should start hunting for slings earlier while they are still green.

This year, Team Echinacea used the visor demo form to collect data and assigned locs 301-474 to the sling plants to relate the demo form to the sling ids. To aid in finding plants next year, team members gave at tag to 53 sling plants and shot a GPS point for each tagged plant. These GPS points will then be added to the stakefile for 2022.

Over the course of 5 days, 6 people spent 1980 minutes (33 person-hours) collecting data for the sling project this summer.

  • Start year: 2007
  • Location: Remnants in Douglas County, MN
  • Sites with seedling searches: East Elk Lake Road, East Riley, East of Town Hall, KJ’s, Loeffler’s Corner, Landfill, Nessman, Northwest of Landfill, Riley, Steven’s Approach, South of Golf Course, Staffanson Prairie
  • Overlaps with: Demographic census in the remnants
  • Data collected:
    • The data were collected on a visor using the demo form. The team recorded plant status (can’t find, basal, dead this year’s leaves, dead last year’s leaves, flowering), number of rosettes, leaf count, nearest neighbors, and head count, if flowering.
    • The 2021 sling materials such as maps and scanned datasheets are here: “Dropbox\burnRem\remData\115_trackSeedlings\slingRefinds2021”
    • The 2021 data from the demo form are here: “Dropbox\burnRem\remData\115_trackSeedlings\slingRefinds2021\slingRefindsData2021.csv”
    • The 2021 stakefile can be found here: “Dropbox\geospatialDataBackup2021\stakeFiles2021\sling2021stakeV.01.csv”
  • Samples or specimens collected: One head from East Elk Lake Road was harvested and is currently housed with the rest of the 2021 remnant harvest at the Chicago Botanic Garden
  • Team members who searched for slings in 2021: Amy Waananen, Ruth Shaw, Mia Stevens, Stuart Wagenius, Jared Beck, Alex Carroll
  • Products:

You can read more about the seedling establishment experiment, as well as links to prior flog entries about this experiment, on the background page for this experiment.

Liatris Classification Protocol

Below is the classification protocol for Liatris X-rays

2021 Update: Insects on Echinacea heads

We know that burning has a positive effect on flowering in Echinacea. However, fire effects on insects are highly variable. There is very little known about how fire affects insect abundance, particularly how fire affects beneficial insects and their predators. Insect predators such as robber flies, ambush bugs, and crab spiders tend to hunt on Echinacea heads or other inflorescences. The increase in flowering heads may increase the prevalence of bee predators. In addition, the 2021 field crew had a high interest in insects. Therefore, we decided to investigate the abundance of beneficial and insect predators on Echinacea heads.

We were able to take advantage of the burned and unburned remnants to investigate this. Starting on July 7th, during phenology we recorded if any insects were present on each head. If any insects were present, we filled out a multi-selection list preloaded with common insects seen on Echinacea heads. Since we were utilizing the phenology data set, we have data on insects from approximately 2,292 heads every three days from July 7th until the end of the season. We ended up having a MASSIVE data set: 11,941 observations of whether insects were present on Echinacea heads or not.

  • Start year: 2021
  • Location: All remnant prairie sites (n=32) where phenology was taken
  • Overlaps with: Maris’s bee project, Liatris insects on flowering heads, Miyauna’s mark and recapture experiment
  • Data collected: Presence/absence data of insects on Echinacea heads. This data has not been cleaned yet, but all the data are in the aiisummer2021/phen folder
  • Samples or specimens collected: no samples were collected
  • Products: Stay tuned!

2021 Update: Andropogon fire and flowering in exPt08

In summer 2020, Team Echinacea established two plots south of experimental plot 8 for a pilot experiment examining fire effects on Big bluestem (Andropogon gerardii) reproduction. Neither plot was burned during 2020. During spring 2021, we randomly selected the western plot to be burned.

Within each rectangular plot, we selected 30 random points. We then counted the number of flowering Andropogon culms within circular 1m2 subplot centered on each random point (within 56.4 cm). After excluding random points that overlapped with the plot boundary or other random points, we were left with 24 usable random points in the eastern plot and 23 usable random points in the western plot.

  • Start year: 2020
  • Location: South of exPt08
  • Overlaps with: Andropogon fire and flowering in remnants
  • Data collected:
    • Stakefile for random plot locations: ~Dropbox/geospatialDataBackup2021/stakeFiles2021/stakeAndroPilot2021.csv
    • Scanned data sheets: ~Dropbox/burnRems/pilotAndro/androPilot2021
  • Samples or specimens collected: Seed heads collected from 2020 and 2021 are currently stored in Jared’s office. These have been dried and will be cleaned / x-rayed to quantify seed set.
  • Products: Stay tuned!

You can read more about the Andropogon fire and flowering in exPt08 experiment, as well as links to prior flog entries about this experiment, on the background page for this experiment.

2021 Update: Seed addition transects in remnants

In 2021, Team Echinacea established 76 transects (each 4 m long) across 32 patches of remnant prairie in the study area. Transect locations were determined by generating an ordered list of random points (random integers corresponding with MN state plane coordinate system) within each remnant and selecting the first 2-4 random points that were located within ~5m of an adult Echinacea but avoided dense patches of flowering plants where we may have difficulty distinguishing experimental seedlings from natural recruits. Each transect originating at a random point is 4-m long and contains four 1-m segments. Most transects extend North from the random point but some extend East (in sites where North-South transects may span an entire ditch). One segment per transect was chosen at random to be planted in fall 2021 and one transect chosen at random to be planted during fall 2022.

  • Start year: 2021
  • Location: 32 patches of remnant prairie in and around Solem Township, MN
  • Overlaps with: Fire and seedling fitness in remnants
  • Data collected: locations for seed addition transects: ~echinaceagis/remSeedAdditionExpt/remSeedExptTransectLocations.csv
  • Samples or specimens collected: NA
  • Products: Stay tuned!

You can read more about the seed addition transects in remnants, as well as links to prior flog entries about this experiment, on the background page for this experiment.

2021 Update: Fire and seedling fitness in remnants

As part of the 2020 NSF grant to study fire effects on plant reproduction and population dynamics, we are implementing a seed addition experiment in numerous remnants. From previous studies, we know that fire can improve recruitment, which is important for population growth. However, our previous observations of recruitment in remnants conflate the amount of seed entering the seed bank and the seedlings emerging from the seed bank. The goal of this seed addition experiment is to help us directly quantify the effects of fire on seedling emergence and early seedling fitness. We will use these data to parameterize demographic models for Echinacea.

For the seed addition experiment, we established 76 transects distributed across 32 prairie remnants with Echinacea. One segment per transect was chosen at random to be planted in fall 2021 and one transect chosen at random to be planted during fall 2022. The study includes 9 sites burned during spring 2021 as well as 7 sites slated to burn during spring 2022. Seeds were sowed in groups of 50 (either one or two packets of 50 per segment planted). All seeds were derived from the 2016 heads harvested in p2.

  • Start year: 2021
  • Location: 32 patches of remnant prairie in and around Solem Township, MN
  • Overlaps with: Seed addition transects in remnants
  • Data collected: All data related to planting can be found here: ~Dropbox/burnRems/seedExp
  • Samples or specimens collected: Seed packets to be planted in fall 2022 are stored in see-through glass cabinets in the population biology lab at CBG.
  • Products: Stay tuned!

You can read more about the fire and seedling fitness in remnants experiment, as well as links to prior flog entries about this experiment, on the background page for this experiment.

2021 Update: Reproductive fitness in remnants

As part of the Echinacea Project’s long-term efforts to monitor reproductive fitness in the remnant populations, Team Echinacea harvested 383 seeds heads from 29 remnants during summer 2021. We randomly selected 15 heads from each population to harvest. If a population had less than 15 flowering plants, we harvested a randomly selected head from all flowering plants. In the fragmented populations we study, flowering plants often fail to produce viable seed due to limited mating opportunities. By harvesting seed heads and quantifying seed set, we can better understand how the spatial location and flowering phenology of Echinacea contribute to reproductive fitness. We are keenly interested in understanding how fire influences reproductive outcomes in fragmented prairies. To this end, we harvested seed heads from 8 populations experimentally burned during spring 2021. We will examine how fire influences mating opportunities and seed set across different populations ranging in size.

These heads we harvested are currently in the CBG lab being cleaned by volunteers and interns. We have even started scanning and counting achenes! Soon the new x-ray will be up and running, and we will begin to answer the burning questions we have about Echinacea reproduction in fragmented prairie remnants.

Start year: 1996

Location: Roadsides, railroad rights of way, and nature preserves in and around Solem Township, MN

Overlaps with: Phenology in the Remnants

Data/Materials collected:  383 seed heads were collected; these are currently at the Chicago Botanic Garden. Data sheets and other materials can be found here: ~Dropbox/remData

Products: We will compile seed set data from 2021 into a dataset with seed set data from previous years.

You can read more about reproductive fitness in remnants, as well as links to previous flog entries mentioning the experiment, on the background page for this experiment.

2021 Update: Random points in remnants

In 2021, Team Echinacea established 378 random points across 27 prairie remnants in western Minnesota. After delineating the boundaries of remnant prairie patches of interest, we established between 6 and 24 random points within each patch (number of points roughly proportional to patch area). These points serve as sampling locations to help Team Echinacea characterize fire effects on the reproduction of plant species like Hesperostipa spartea and Andropogon gerardii. These points may also serve as infrastructure for future research projects.

  • Start year: 2021
  • Location: Roadsides, railroad rights of way, and nature preserves in and around Solem Township, MN
  • Overlaps with: Hesperostipa fire and flowering in remnants, Andropogon fire and flowering in remnants
  • Data collected: stakefile with 378 random point locations can be found: ~Dropbox/geospatialDataBackup2021/stakeFiles2021/randomPointsInRems/stakeRandomPointsInRems2021.csv
  • Samples or specimens collected: NA
  • Products: NA

You can read more about Random points in remnants, as well as links to prior flog entries about this experiment, on the background page for this experiment.

2021 Update: Asclepias viridiflora demography

In summer 2021, Team Echinacea searched for and mapped 71 Green Milkweed (Asclepias viridiflora) plants across 8 patches of remnant prairie in our study area in western MN. This denizen of dry prairies is tough to spot and appears to be declining across its range. Our goal is to monitor Green Milkweed individuals in the study area to better understand their demography, responses to prescribed fire, and reproduction. We located and mapped 70 Green Milkweed plants, 59 of which flowered. Of the plants that flowered, 31 produced pods. We harvested pods from 22 plants for further study in the lab and (hopefully) growing some plants from seed.

  • Start year: 2021
  • Location: Remnant patches of prairie in and around Solem Township, MN
  • Overlaps with: NA
  • Data collected: demographic data: ~Dropbox/burnRems/remAv/data2021/ascvir2021.csv
  • Samples or specimens collected: Pods/seed collected during summer 2021 currently reside in Jared’s office. These seeds need to be inventoried, cleaned, counted, and x-rayed.
  • Products: Stay tuned!

You can read more about the Asclepias viridiflora demography project, as well as links to prior flog entries about this experiment, on the background page for this experiment.